from
Newton's Method
by T. R.
Newton's method for finding zeros of a function.
|
| newton( f, df, x0, tol, nmax )
|
function [ x, ex ] = newton( f, df, x0, tol, nmax )
%
% NEWTON Newton's Method
% Newton's method for finding successively better approximations to the
% zeroes of a real-valued function.
%
% Input:
% f - input funtion
% df - derived input function
% x0 - inicial aproximation
% tol - tolerance
% nmax - maximum number of iterations
%
% Output:
% x - aproximation to root
% ex - error estimate
%
% Example:
% [ x, ex ] = newton( 'exp(x)+x', 'exp(x)+1', 0, 0.5*10^-5, 10 )
%
% Author: Tashi Ravach
% Version: 1.0
% Date: 16/04/2007
%
if nargin == 3
tol = 1e-4;
nmax = 1e1;
elseif nargin == 4
nmax = 1e1;
elseif nargin ~= 5
error('newton: invalid input parameters');
end
f = inline(f);
df = inline(df);
x(1) = x0 - (f(x0)/df(x0));
ex(1) = abs(x(1)-x0);
k = 2;
while (ex(k-1) >= tol) && (k <= nmax)
x(k) = x(k-1) - (f(x(k-1))/df(x(k-1)));
ex(k) = abs(x(k)-x(k-1));
k = k+1;
end
end
|
|
Contact us