Code covered by the BSD License  

Highlights from
Data based modeling of nonlinear dynamic systems using System Identification Toolbox

image thumbnail

Data based modeling of nonlinear dynamic systems using System Identification Toolbox

by

 

01 Sep 2010 (Updated )

Perspectives on nonlinear identification using a throttle valve modeling example.

throttleODE(t, x, F, c, k, K, b, varargin)
function [dx, y] = throttleODE(t, x, F, c, k, K, b, varargin)
% ODE function for throttle body dynamics.
% Represent equation of motion by a set of first order equations (state-space) 
%
%	dx: state derivatives at time t
%	y: output at time t
%	
%	t: time value (scalar)
%	x: state vector at time t
%	F: input (step command) at time t
%	c, k, K, b: parameters to be estimated

%   Copyright 2009-2010 The MathWorks, Inc.

NLx = max(90,x(1))-90+min(x(1),15)-15; % nonlinear displacement value

% State equations
dx(1) = x(2);
dx(2) = b*F - c*x(2) - k*x(1) - K*NLx;

% Output equation
y = x(1);

end

Contact us