% ======================================================== %
% Files of the Matlab programs included in the book: %
% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, %
% Second Edition, Luniver Press, (2010). www.luniver.com %
% ======================================================== %
% Cuckoo Search for nonlinear constrained optimization %
% Programmed by Xin-She Yang @ Cambridge University 2009 %
% Usage: cuckoo_spring(25000) or cuckoo_spring; %
function [bestsol,fval]=cuckoo_search_spring(time)
format long;
help cuckoo_search_spring.m
if nargin<1,
% Number of iteraions
time=2000;
end
disp('Computing ... it may take a few minutes.');
% Number of nests (or different solutions)
n=25;
% Discovery rate of alien eggs/solutions
pa=0.25;
% Simple bounds of the search domain
% Lower bounds and upper bounds
Lb=[0.05 0.25 2.0];
Ub=[2.0 1.3 15.0];
% Random initial solutions
for i=1:n,
nest(i,:)=Lb+(Ub-Lb).*rand(size(Lb));
end
% Get the current best
fitness=10^10*ones(n,1);
[fmin,bestnest,nest,fitness]=get_best_nest(nest,nest,fitness);
N_iter=0;
%% Starting iterations
for t=1:time,
% Generate new solutions (but keep the current best)
new_nest=get_cuckoos(nest,bestnest,Lb,Ub);
[fnew,best,nest,fitness]=get_best_nest(nest,new_nest,fitness);
% Update the counter
N_iter=N_iter+n;
% Discovery and randomization
new_nest=empty_nests(nest,Lb,Ub,pa) ;
% Evaluate this solution
[fnew,best,nest,fitness]=get_best_nest(nest,new_nest,fitness);
% Update the counter again
N_iter=N_iter+n;
% Find the best objective so far
if fnew<fmin,
fmin=fnew;
bestnest=best ;
end
end %% End of iterations
%% Post-optimization processing
%% Display all the nests
disp(strcat('Total number of iterations=',num2str(N_iter)));
fmin
bestnest
%% --------------- All subfunctions are list below ------------------
%% Get cuckoos by ramdom walk
function nest=get_cuckoos(nest,best,Lb,Ub)
% Levy flights
n=size(nest,1);
% Levy exponent and coefficient
% For details, see equation (2.21), Page 16 (chapter 2) of the book
% X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
for j=1:n,
s=nest(j,:);
% This is a simple way of implementing Levy flights
% For standard random walks, use step=1;
%% Levy flights by Mantegna's algorithm
u=randn(size(s))*sigma;
v=randn(size(s));
step=u./abs(v).^(1/beta);
% In the next equation, the difference factor (s-best) means that
% when the solution is the best solution, it remains unchanged.
stepsize=0.01*step.*(s-best);
% Here the factor 0.01 comes from the fact that L/100 should the typical
% step size of walks/flights where L is the typical lenghtscale;
% otherwise, Levy flights may become too aggresive/efficient,
% which makes new solutions (even) jump out side of the design domain
% (and thus wasting evaluations).
% Now the actual random walks or flights
s=s+stepsize.*randn(size(s));
% Apply simple bounds/limits
nest(j,:)=simplebounds(s,Lb,Ub);
end
%% Find the current best nest
function [fmin,best,nest,fitness]=get_best_nest(nest,newnest,fitness)
% Evaluating all new solutions
for j=1:size(nest,1),
fnew=fobj(newnest(j,:));
if fnew<=fitness(j),
fitness(j)=fnew;
nest(j,:)=newnest(j,:);
end
end
% Find the current best
[fmin,K]=min(fitness) ;
best=nest(K,:);
%% Replace some nests by constructing new solutions/nests
function new_nest=empty_nests(nest,Lb,Ub,pa)
% A fraction of worse nests are discovered with a probability pa
n=size(nest,1);
% Discovered or not -- a status vector
K=rand(size(nest))>pa;
% In real world, if a cuckoo's egg is very similar to a host's eggs, then
% this cuckoo's egg is less likely to be discovered, thus the fitness should
% be related to the difference in solutions. Therefore, it is a good idea
% to do a random walk in a biased way with some random step sizes.
nestn1=nest(randperm(n),:);
nestn2=nest(randperm(n),:);
%% New solution by biased/selective random walks
stepsize=rand*(nestn1-nestn2);
new_nest=nest+stepsize.*K;
for j=1:size(new_nest,1)
s=new_nest(j,:);
new_nest(j,:)=simplebounds(s,Lb,Ub);
end
% Application of simple constraints
function s=simplebounds(s,Lb,Ub)
% Apply the lower bound
ns_tmp=s;
I=ns_tmp<Lb;
ns_tmp(I)=Lb(I);
% Apply the upper bounds
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
s=ns_tmp;
%% Spring desgn optimization -- objective function
function z=fobj(u)
% The well-known spring design problem
z=(2+u(3))*u(1)^2*u(2);
z=z+getnonlinear(u);
function Z=getnonlinear(u)
Z=0;
% Penalty constant
lam=10^15;
% Inequality constraints
g(1)=1-u(2)^3*u(3)/(71785*u(1)^4);
gtmp=(4*u(2)^2-u(1)*u(2))/(12566*(u(2)*u(1)^3-u(1)^4));
g(2)=gtmp+1/(5108*u(1)^2)-1;
g(3)=1-140.45*u(1)/(u(2)^2*u(3));
g(4)=(u(1)+u(2))/1.5-1;
% No equality constraint in this problem, so empty;
geq=[];
% Apply inequality constraints
for k=1:length(g),
Z=Z+ lam*g(k)^2*getH(g(k));
end
% Apply equality constraints
for k=1:length(geq),
Z=Z+lam*geq(k)^2*getHeq(geq(k));
end
% Test if inequalities hold
% Index function H(g) for inequalities
function H=getH(g)
if g<=0,
H=0;
else
H=1;
end
% Index function for equalities
function H=getHeq(geq)
if geq==0,
H=0;
else
H=1;
end
% ----------------- end ------------------------------