from
Newton's Method
by Harmon Amakobe
Finds better successive approximations for the root of a function using Newton's Method.
|
| newt(func,gss,ite,tol)
|
% Author: Harmon Amakobe
% Date: 3/8/2011
% Version : 1.1
% Newton's Method
% Input:
% func -> function
% gss -> initial guess
% ite -> desired number of iterations
% tol -> tolerance
% NOTE: Number of iterations will be increased accordingly in order to meet
% the set tolerance value.
% Output:
% This function will output the number of iterations it ran, and the
% approximated value.
% Example:
% >> newt( ' x^3 + x - 1 ', -.7 , 6 , 1e-6 )
% >>
% 6
%
% ans =
%
% 0.682327803844332
function apprx = newt(func,gss,ite,tol)
f = inline(func);
fp = inline(diff(sym(func)));
iter = ite;
for n=1:iter;
oldgss = gss;
newgss = gss - (f(gss)/fp(gss));
gss = newgss;
end
if abs(newgss-oldgss) < tol
apprx = gss;
disp(iter);
else
iter = ite+1;
apprx = newt(func,gss,iter,tol);
end
end
|
|
Contact us