File Exchange

image thumbnail

Hammerstein Toolbox

Rapid estimation of the structural elements composing a cascade of Hammerstein models.



View License

In a number of vibration applications, systems under study are slightly non-linear. Cascade of Hammerstein models conveniently allows one to describe such systems.
The Hammerstein Toolbox provides a simple method based on a phase property of exponential sine sweeps
to estimate the structural elements (Kernels) of such a model from only one measured response of the system.
[1] M. Rébillat, R. Hennequin, E. Corteel, B.F.G. Katz, "Identification of cascade of Hammerstein models for the description of non-linearities in vibrating devices", Journal of Sound and Vibration, Volume 330, Issue
5, Pages 1018-1038, February 2011.

[2] A. Novak, L. Simon, F. Kadlec, P. Lotton, "Nonlinear system identification using exponential swept-sine signal", IEEE Transactions on Instrumentation and Measurement, Volume 59, Issue 8, Pages 2220-2229, August 2010.

Comments and Ratings (4)

If I want to verify the method on some general input signal, I get a scaling problem. I use :
for n = 1:order
yN = yN + convq(hhatN(n,:),xN.^n) ;
with xN being some jump function, for example.

jing zhang

jing zhang


Ren (view profile)



Updates by A. NOVAK (March 2015)


Updates by A. NOVAK, March 2015


Licence Update.


Modifications done by A. Novak.


License update.


No other Matlab products required.

MATLAB Release
MATLAB 7.8 (R2009a)

Download apps, toolboxes, and other File Exchange content using Add-On Explorer in MATLAB.

» Watch video

Win prizes and improve your MATLAB skills

Play today