Be the first to rate this file! 51 Downloads (last 30 days) File Size: 282 KB File ID: #31080
image thumbnail

ev-MOGA Multiobjective Evolutionary Algorithm

by Juan M. Herrero

 

18 Apr 2011 (Updated 02 May 2013)

This toolbox implements the ev-MOGA Multiobjective Evolutionary Algorithm.

| Watch this File

File Information
Description

ev-MOGA Multiobjective Evolutionary Algorithm has been developed by the Predictive Control and Heuristic optimization Group at Universitat Politècnica de València. ev-MOGA is an elitist multi-objective evolutionary algorithm based on the concept of epsilon dominance. ev-MOGA, tries to obtain a good approximation to the Pareto Front in a smart distributed manner with limited memory resources. It also adjusts the limits of the Pareto front dynamically.

Details about ev-MOGA are described in (please, cite this algorithm as):

[1] M. Martínez, J.M. Herrero, J. Sanchis, X. Blasco and S. García-Nieto. Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. Vol. 22 pp. 455 - 465, 2009 (ISSN:0952-1976).
 
The algorithm is also described in:

[2] J.M. Herrero, M. Martínez, J. Sanchis and X. Blasco. Well-Distributed Pareto Front by Using the epsilon-MOGA Evolutionary Algorithm. Lecture Notes in Computer Science, 4507, pp. 292-299, 2007. Springer-Verlag. (ISSN: 0302-9743)

ev-MOGA has been used in:

[3] J.M. Herrero, X. Blasco, M. Martínez, C. Ramos and J. Sanchis. Robust Identification of a Greenhouse Model using Multi-objective Evolutionary Algorithms. Biosystems Engineering. Vol. 98, Num. 3, pp. 335 - 346, Nov 2007. (ISSN 1537-5110)

[4] J.M. Herrero, X. Blasco , M. Martínez, J. Sanchis. Multiobjective Tuning of Robust PID Controllers Using Evolutionary Algorithms. Lecture Notes in Computer Science, 4974, pp. 515 - 524, 2008. Springer-Verlag. (ISSN: 0302-9743)

[5] J. M. Herrero, S. García-Nieto, X. Blasco, V. Romero-García, J. V. Sánchez-Pérez and L. M. Garcia-Raffi. Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization. Vol. 39, num. 2, pp. 203 - 215, 2009 (ISSN:1615-1488).

[6] G. Reynoso, X. Blasco, J. Sanchis. Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial. Vol. 6, Num. 4, pp. 93 - 103 , 2009. (ISSN: 1697-7912)

[7] E. Afzalan, M. Joorabian. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable.
Electrical Power and Energy Systems 52 (2013) 55–67

Basic instructions

The “ev-MOGAdescription.pdf” file contains the description of the ev-MOGA algorithm. You should read it before using the algorithm in order to understand how it works. Two multiobjective problems mop1.m and mop4.m are included as examples.

Basic instructions:
1) Create the Matlab function used to evaluate the objective functions (e.g. mop1.m)
2) Modify “run_evMOGA.m”. which contains the parameter configuration of the ev-MOGA and defines the optimization problem to solve.
3) Execute the script “run_evMOGA .m” to run the ev-MOGA. After execution, variables ParetoFront and ParetoSet variables are obtained in the workspace.

MATLAB release MATLAB 7.1.0 (R14SP3)
Tags for This File  
Everyone's Tags
cpoh(2), evolutionary algorithms(2), multiobjective optimization, optimization, pareto front
Tags I've Applied
Add New Tags Please login to tag files.
Please login to add a comment or rating.
Updates
09 May 2011

ev-MOGA toolbox.pdf file has been modified.

02 May 2013

An article which uses evMOGA has been added.

Contact us