from
MultiClass LDA
by Darko Juric
Performs multiclass linear discriminant analysis.
|
| LDA_Demo.m |
trainSamples = [3 1;
5 2;
1 -3;
-1 -5;
2 -3;
5 -5;];
trainClasses = {'1', '1', '2', '2', '3', '3'}; %try drawing samples and discriminant line!
testSamples = [14 15;
-8 -6];
testClasses = {'1', '2'};
%************************* MultiClass LDA ***************************************
mLDA = LDA(trainSamples, trainClasses);
mLDA.Compute();
%dimension of a samples is < (mLDA.NumberOfClasses-1) so following line cannot be executed:
%transformedSamples = mLDA.Transform(meas, mLDA.NumberOfClasses - 1);
transformedTrainSamples = mLDA.Transform(trainSamples, 1);
transformedTestSamples = mLDA.Transform(testSamples, 1);
%************************* MultiClass LDA ***************************************
calculatedClases = knnclassify(transformedTestSamples, transformedTrainSamples, trainClasses);
simmilarity = [];
for i = 1 : 1 : length(testClasses)
similarity(i) = ( testClasses{i} == calculatedClases{i} );
end
accuracy = sum(similarity) / length(testClasses);
fprintf('Testing: Accuracy is: %f %%\n', accuracy*100);
|
|
Contact us