%LgivenN
% Function which generates a cell array of possible orbital letters
% corresponding to a hydrogenic orbital with quantum number N.
%
% NOTE: Energy levels in Hydrogenic type atoms are characterized by quantum
% numbers n = 1, 2, 3, 4....
% Orbital quantum numbers are:
% L = 0,1,2....(n-1)
% M = 0, +/-1, +/-2,...+/- L
%
% Orbitals are typically labelled in the form nXM e.g. 3P1
% X is characterized by L.
% L = 0, X = S min{n} = 1 max(abs(M)) = 0
% L = 1, X = P min{n} = 2 max(abs(M)) = 1
% L = 2, X = D min{n} = 3 max(abs(M)) = 2
% L = 3, X = F min{n} = 4 max(abs(M)) = 3
% L = 4, X = G min{n} = 5 max(abs(M)) = 4
% L = 5, X = H min{n} = 6 max(abs(M)) = 5
% L = 6, X = I min{n} = 7 max(abs(M)) = 6
%
% By convention XM orbitals are the linear combination of +abs(M) and
% -abs(M) orbitals. For example 3P-1 will combine the (angular) orbitals
% Y(L=1,M=1) - Y(L=1,M=-1). Similarly 3P1 will correspond to Y(L=1,M=1) +
% Y(L=1,M=-1).
function Ls = LgivenN(N)
L = 0:N-1;
Ls = cell(1,N-1);
for n=1:N
if L(n)==0
Ls{n} = 'S';
end
if L(n)==1
Ls{n} = 'P';
end
if L(n)==2
Ls{n} = 'D';
end
if L(n)==3
Ls{n} = 'F';
end
if L(n)==4
Ls{n} = 'G';
end
if L(n)==5
Ls{n} = 'H';
end
if L(n)==6
Ls{n} = 'I';
end
if L(n)==7
Ls{n} = 'J';
end
if L(n)==8
Ls{n} = 'K';
end
if L(n)==9
Ls{n} = 'L';
end
end
%End of code