Description |
A wrapper for MATLAB symbolic library implementation of the 'MeijerG' G^{m,n}_{p,q}(...|z) function.
Syntax : MeijerG({[a_1,...a_n],[a_n+1,...a_p]},{[b_1,...b_m], [b_m+1,...b_q]},z)
Input arguments :
a - {[a_1,...a_n],[a_{n+1},...a_p]}
b - {[a_1,...a_m],[a_{m+1},...a_q]}
z - matrix of (possibly complex) numbers
Output:
y - has same dimensions as 'z'
1.) For invalid arguments, 'double' function for converting results back from symbols would return an error. 'MeijerG' catches the error, displays a warning, and sets corresponding position of 'y' to 'nan'.
2.) 'double' to 'string' conversion used for forming the symbolic expressions causes a precision loss, and possibly, round of errors.
3.) Sometimes, even the slightest changes to arguments could produce unacceptable results.
e.g.
>> MeijerG({[1,1], []},{1, 1},[1,2,3])
ans =
NaN 0.666666666666667 0.750000000000000
>> MeijerG({[1,1], []},{1, 1},[1+1e-5,2,3])
ans =
0.500002499987500 0.666666666666667 0.750000000000000
Here the second result appears correct, since MeijerG({[1,1], []},{1, 1},z ) = z/(z+1).
Please let me know if such issues can be circumvented. |