Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

James Huntley

 

generates random variates from over 870 univariate distributions

beta(z,w,v)
function y = beta(z,w,v)
%BETA   Beta function.
%   Y = BETA(Z,W) computes the beta function for corresponding
%   elements of Z and W.  The beta function is defined as
%
%   beta(z,w) = integral from 0 to 1 of t.^(z-1) .* (1-t).^(w-1) dt.
%
%   The arrays Z and W must be the same size (or either can be
%   scalar).
%
%   See also BETAINC, BETALN.

%   C. Moler, 2-1-91.
%   Ref: Abramowitz & Stegun, sec. 6.2.
%   Copyright 1984-2001 The MathWorks, Inc. 
%   $Revision: 5.8 $  $Date: 2001/04/15 12:01:42 $

if nargin<2,
  error('Not enough input arguments.');
elseif nargin == 2
    y = exp(gammaln(z)+gammaln(w)-gammaln(z+w));
elseif nargin == 3
    warning(sprintf([ ...
    'This usage of beta(x,z,w) is obsolete and will be eliminated\n' ...
    '         in future versions.  Please use BETAINC(X,Z,W) instead.']));
    y = betainc(z,w,v);
end

Contact us