Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

James Huntley

 

generates random variates from over 870 univariate distributions

binomial(n,d)
function [f] = binomial(n,d)
%BINOMIAL  calculate the binomial coefficient
%          n and d may be complex and any equal size
%
%        n!
% f = --------  
%     d!(n-d)!
%
%usage: b = binomial(n,d)
%
%tested on version 5.3.1
%
%see also: Gamma, Prod
%see also: mhelp binomial
%
%not correct for negative integer arguments!

%Paul Godfrey
%pgodfrey@intersil.com
%8-12-00

nsize=size(n); n=n(:);
dsize=size(d); d=d(:);

if min(nsize==dsize)==0
   error('Input argument size mismatch!')
end

if (0<n & 0<=d & round(n)==n & round(d)==d & n>=d & max(size(n))==1 & max(size(d))==1)
   f = prod((d+1):n)/prod(1:(n-d));
else
   z=gamma([n d n-d]+1);
   f=z(:,1)./(z(:,2).*z(:,3));
end

f=reshape(f,nsize);

return

%a demo of this routine is
dx=1/16;
dy=dx;
x=-4:dx:4;
y=-4:dy:4;
[X,Y]=meshgrid(x,y);
f=binomial(X,Y);
p=find(abs(f)>4);
%f(p)=sign(real(f(p)))*4;
f(p)=NaN;
mesh(x,y,real(f))
view([23 54]);
rotate3d

Contact us