Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

 

generates random variates from over 870 univariate distributions

binomial_pdf(x,n,p)
function y = binomial_pdf(x,n,p)
% BINOPDF Binomial probability density function.
%   Y = BINOPDF(X,N,P) returns the binomial probability density 
%   function with parameters N and P at the values in X.
%   Note that the density function is zero unless X is an integer.
%
%   The size of Y is the common size of the input arguments. A scalar input  
%   functions as a constant matrix of the same size as the other inputs.    

%   Reference:
%      [1]  M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
%      Functions", Government Printing Office, 1964, 26.1.20.

%   Copyright 1993-2000 The MathWorks, Inc. 
%   $Revision: 2.9 $  $Date: 2000/05/26 17:28:20 $


if nargin < 3, 
    error('Requires three input arguments');
end

[errorcode x n p] = distchck(3,x,n,p);

if errorcode > 0
    error('Requires non-scalar arguments to match in size.');
end

% Initialize Y to zero.
y = zeros(size(x));
 
% Binomial distribution is defined on positive integers less than N.
k = find(x >= 0  &  x == round(x)  &  x <= n);
if any(k),
   nk = gammaln(n(k) + 1) - gammaln(x(k) + 1) - gammaln(n(k) - x(k) + 1);
   lny(k) = nk + x(k).*log( p(k)) + (n(k) - x(k)).*log(1 - p(k));
   y(k) = exp(lny(k));
end

k1 = find(n < 0 | p < 0 | p > 1 | round(n) ~= n); 
if any(k1)
   tmp = NaN;
   y(k1) = tmp(ones(size(k1))); 
end

Contact us