Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

James Huntley (view profile)

 

generates random variates from over 870 univariate distributions

binomial_pdf(x,n,p)
function y = binomial_pdf(x,n,p)
% BINOPDF Binomial probability density function.
%   Y = BINOPDF(X,N,P) returns the binomial probability density 
%   function with parameters N and P at the values in X.
%   Note that the density function is zero unless X is an integer.
%
%   The size of Y is the common size of the input arguments. A scalar input  
%   functions as a constant matrix of the same size as the other inputs.    

%   Reference:
%      [1]  M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
%      Functions", Government Printing Office, 1964, 26.1.20.

%   Copyright 1993-2000 The MathWorks, Inc. 
%   $Revision: 2.9 $  $Date: 2000/05/26 17:28:20 $


if nargin < 3, 
    error('Requires three input arguments');
end

[errorcode x n p] = distchck(3,x,n,p);

if errorcode > 0
    error('Requires non-scalar arguments to match in size.');
end

% Initialize Y to zero.
y = zeros(size(x));
 
% Binomial distribution is defined on positive integers less than N.
k = find(x >= 0  &  x == round(x)  &  x <= n);
if any(k),
   nk = gammaln(n(k) + 1) - gammaln(x(k) + 1) - gammaln(n(k) - x(k) + 1);
   lny(k) = nk + x(k).*log( p(k)) + (n(k) - x(k)).*log(1 - p(k));
   y(k) = exp(lny(k));
end

k1 = find(n < 0 | p < 0 | p > 1 | round(n) ~= n); 
if any(k1)
   tmp = NaN;
   y(k1) = tmp(ones(size(k1))); 
end

Contact us