Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

James Huntley (view profile)

 

generates random variates from over 870 univariate distributions

create_partition3.m
% create_partition3.m - tests for solutions to a Diophantine Equation and writes
%               partitions to sequentialy-numbered .mat files.
%
%   NOTE: Currently limited to partitions of <= nmax.
%
%   Created by: J. Huntley,  10/24/11.
%

outfilename = 'partitionX';
nmin = 1;
nmax = 60;
n = nmin:nmax;

%Create and write partition files.
for jn = nmin:nmax
    jn
    % Find all Partitions of 'n'. Returned in cell array, "L".
    [L, callmax, a_new_hold, mult_new_hold] = partitioni8(jn);

    % Load Partitions from cell array, "L", into array 'pp'.
    sL1 = size(L,1)
    sL2 = size(L,2)
    for js = 1:sL2
        s2 = size(L{1,js},2);
        pp(js,1:s2) = int8(L{1,js});
    end
    
    %pp
    
    sa1 = size(a_new_hold,1)
    sa2 = size(a_new_hold,2)
    for js = 1:sa2
        s2 = size(a_new_hold{1,js},2);
        aa(js,1:s2) = int8(a_new_hold{js});
        mm(js,1:s2) = int8(mult_new_hold{js});
    end
    
    %aa 
    %mm
    cm = int8(callmax); 
    

    % Construct occurances of each value in each partition in array, 'd'.
    % Array 'd' contains the solutions to the Diophantine Equation.
    spc = size(pp,2)
    spr = size(pp,1)
    for jr = 1:spr
        for jc = 1:spc
            d(jr,jc) = int8(size(find(pp(jr,1:spc) == jc),2));     
        end
    end

    %d
    
    % Save partition and frequency (Diophantine Solution) arrays to .mat
    % files.
    pname = [outfilename num2str(jn)]
    save(pname, 'pp', 'aa', 'mm', 'cm', 'd')
    clear L callmax pp aa mm cm d a_new_hold mult_new_hold;
end


    

Contact us