Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

 

generates random variates from over 870 univariate distributions

hyge_pdf(x,m,k,n)
function y = hyge_pdf(x,m,k,n)
%HYGE_PDF Hypergeometric probability density function.
%   Y = HYGE_PDF(X,M,K,N) returns the hypergeometric probability 
%   density function at X with integer parameters M, K, and N.
%   Note: The density function is zero unless X is an integer.
%
%   The size of Y is the common size of the input arguments. A scalar input  
%   functions as a constant matrix of the same size as the other inputs.    

%   Reference:
%      [1]  Mood, Alexander M., Graybill, Franklin A. and Boes, Duane C.,
%      "Introduction to the Theory of Statistics, Third Edition", McGraw Hill
%      1974 p. 91.

%   Copyright 1993-2000 The MathWorks, Inc. 
%   $Revision: 2.10 $  $Date: 2000/05/26 18:52:57 $

if nargin < 4, 
    error('Requires four input arguments.'); 
end

[errorcode x m k n] = distchck(4,x,m,k,n);

if errorcode > 0
    error('Requires non-scalar arguments to match in size.');
end

% Initialize Y to zero.
y = zeros(size(x));

%   Return NaN for values of the parameters outside their respective limits.
k1 = find(m < 0 | k < 0 | n < 0 | round(m) ~= m | round(k) ~= k | ...
           round(n) ~= n | n > m | k > m | x > n | x > k);
if any(k1)
    tmp = NaN;
    y(k1) = tmp(ones(size(k1))); 
end

kc = 1:prod(size(x));

%   Remove values of X for which Y is zero by inspection.
k2 = find(x(kc) > k(kc) | m(kc) - k(kc) - n(kc) + x(kc) + 1 <= 0 | x(kc) < 0);

k12 = [k1(:); k2(:)];
k12 = k12(:);
kc(k12) = [];

% find integer values of x that are within the correct range
if any(kc),
    kx = gammaln(k(kc)+1)-gammaln(x(kc)+1)-gammaln(k(kc)-x(kc)+1);
    mn = gammaln(m(kc)+1)-gammaln(n(kc)+1)-gammaln(m(kc)-n(kc)+1);
    mknx = gammaln(m(kc)-k(kc)+1)-gammaln(n(kc)-x(kc)+1)-gammaln(m(kc)-k(kc)-(n(kc)-x(kc))+1);                      
    y(kc) = exp(kx + mknx - mn);
end

Contact us