Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

 

generates random variates from over 870 univariate distributions

ipnegbin_pdf(n, ppi, rho, r)
% ipnegbin_pdf.m - evaluates an Inflated Parameter Negative Binomial Probability denisity.
%   See "Inflated-Parameter Family of Generalized Power Series Distributions
%   and their Application in Analysis of Overdispersed Insurance Data", 
%   N. Kolev et al. ARCH 00V211.PDF
%
%  Created by Jim Huntley,  10/27/09
%
%   Loads files 'partition1-N.dat'
%

function [pdf] = ipnegbin_pdf(n, ppi, rho, r)

%persistent log1mpr logrho pn

%Initializations.
%if(isempty(pn))
    pn = ppi^r;
    log1mpr = log((1-ppi)*(1-rho));
    logrho = log(rho);
%end

% Evaluate PDF.
if(n == 0)
    pdf = pn;

elseif(n > 0)
    % Fetch pre-stored partitions of 'n'. Frequencies returned in array, "d".
    pname = ['partition' num2str(n)];
    load(pname,'d');            
    spc = size(d,2);
    d = double(d);

    % Calculate PDF.
    % Sum over all partition frequencies to get solution to Diophantine Equation. 
    sum1 = 0;
    d1 = size(d,1);
    for jr = 1:d1
         for jc = 1:spc
            x(jc) = d(jr,jc);
            dx(jc) = (jc-1) * x(jc);
            %fx(jc) = factorial(x(jc));
            fx(jc) = gammaln(x(jc)+1);
        end
        sumx = sum(x);
        %sumxprm1 = sumx + r - 1;
        sumxpr = sumx + r;
        sumdx = sum(dx); 
        %pfx = prod(fx)*factorial(r-1);
        pfx = sum(fx)+ gammaln(r);
        %sum1 = sum1 + factorial(sumxprm1)*((1-ppi)*(1-rho))^sumx*rho^sumdx / pfx;
        sum1 = sum1 + exp(gammaln(sumxpr) + sumx*log1mpr + sumdx*logrho - pfx);
    end
    pdf = pn * sum1; 

end % conditional for n > 0.

return


    

Contact us