Code covered by the BSD License  

Highlights from
Generation of Random Variates

image thumbnail

Generation of Random Variates

by

 

generates random variates from over 870 univariate distributions

norm_cdf(x,mu,sigma)
function p = norm_cdf(x,mu,sigma)
%NORM_CDF Normal cumulative distribution function (cdf).
%   P = NORM_CDF(X,MU,SIGMA) computes the normal cdf with mean MU and
%   standard deviation SIGMA at the values in X.
%
%   The size of P is the common size of X, MU and SIGMA. A scalar input  
%   functions as a constant matrix of the same size as the other inputs.    
%
%   Default values for MU and SIGMA are 0 and 1 respectively.

%   Algorithm derived from a FORTRAN program by W. J. Cody.
%   For a general reference on the normal distribution, see:
%      M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
%          Functions", Government Printing Office, 1964, 26.2.

%   Copyright 1993-2000 The MathWorks, Inc. 
%   $Revision: 2.9 $  $Date: 2000/07/28 19:33:03 $

if nargin < 3, 
    sigma = 1;
end

if nargin < 2;
    mu = 0;
end

[errorcode x mu sigma] = distchck(3,x,mu,sigma);

if errorcode > 0
    error('Requires non-scalar arguments to match in size.');
end

%   Initialize P to zero.
p = zeros(size(x));

% Return NaN if SIGMA is not positive.
k1 = find(sigma <= 0);
if any(k1)
    tmp   = NaN;
    p(k1) = tmp(ones(size(k1))); 
end

% Express normal CDF in terms of the error function.
k = find(sigma > 0);
if any(k)
    p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2)));
end

% Make sure that round-off errors never make P greater than 1.
k2 = find(p > 1);
if any(k2)
    p(k2) = ones(size(k2));
end

return

Contact us