Code covered by the BSD License

# Generation of Random Variates

### James Huntley (view profile)

generates random variates from over 870 univariate distributions

stirling2 ( n, m )
```function sr = stirling2 ( n, m )

%% STIRLING2 computes the Stirling numbers of the second kind.
%
%  Discussion:
%
%    S2(N,M) represents the number of distinct partitions of N elements
%    into M nonempty sets.  For a fixed N, the sum of the Stirling
%    numbers S2(N,M) is represented by B(N), called "Bell's number",
%    and represents the number of distinct partitions of N elements.
%
%    For example, with 4 objects, there are:
%
%    1 partition into 1 set:
%
%      (A,B,C,D)
%
%    7 partitions into 2 sets:
%
%      (A,B,C) (D)
%      (A,B,D) (C)
%      (A,C,D) (B)
%      (A) (B,C,D)
%      (A,B) (C,D)
%      (A,C) (B,D)
%      (A,D) (B,C)
%
%    6 partitions into 3 sets:
%
%      (A,B) (C) (D)
%      (A) (B,C) (D)
%      (A) (B) (C,D)
%      (A,C) (B) (D)
%      (A,D) (B) (C)
%      (A) (B,D) (C)
%
%    1 partition into 4 sets:
%
%      (A) (B) (C) (D)
%
%    So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15.
%
%
%  First terms:
%
%    N/M: 1    2    3    4    5    6    7    8
%
%    1    1    0    0    0    0    0    0    0
%    2    1    1    0    0    0    0    0    0
%    3    1    3    1    0    0    0    0    0
%    4    1    7    6    1    0    0    0    0
%    5    1   15   25   10    1    0    0    0
%    6    1   31   90   65   15    1    0    0
%    7    1   63  301  350  140   21    1    0
%    8    1  127  966 1701 1050  266   28    1
%
%  Recursion:
%
%    S2(N,1) = 1 for all N.
%    S2(I,I) = 1 for all I.
%    S2(I,J) = 0 if I < J.
%
%    S2(N,M) = M * S2(N-1,M) + S2(N-1,M-1)
%
%  Properties:
%
%    sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J)
%
%    X**N = sum ( 0 <= K <= N ) S2(N,K) X_K
%    where X_K is the falling factorial function.
%
%  Modified:
%
%    25 August 2004
%
%  Author:
%
%    John Burkardt (original),
%       J. Huntley, 01/08/07, modified to evaluate zero-valued input arguments
%       according to Wolfram and to return last-valued, unsigned outputs,
%       rather than complete arrays of signed Stirling numbers.
%
%  Parameters:
%
%    Input, integer N, the number of rows of the table.
%
%    Input, integer M, the number of columns of the table.
%
%    Output, integer S2(N,M), the Stirling numbers of the second kind.
%
%%
if ( n < 0 )
s2 = [];
return
end

if ( m < 0 )
s2 = [];
return
end

if(m == 0)
if(n == 0)
sr = 1;
elseif(n > 0)
sr = 0;
end
return
end

if(n == 0)
sr = 0;
return
end

s2(1,1) = 1;
s2(1,2:m) = 0;

for i = 2 : n

s2(i,1) = 1;

for j = 2 : m
s2(i,j) = j * s2(i-1,j) + s2(i-1,j-1);
end

end

sr = abs(s2(n,m));

return

```