Code covered by the BSD License

### Highlights from Laplacian eigenmap ~ Diffusion map ~ manifold learning

5.0
5.0 | 2 ratings Rate this file 31 Downloads (last 30 days) File Size: 1.99 KB File ID: #36141 Version: 1.0

# Laplacian eigenmap ~ Diffusion map ~ manifold learning

### Kye Taylor (view profile)

Demo techniques of nonlinear eigenmaps for the purpose of recovering low-dimensional geometries.

File Information
Description

Using manifold learning techniques (aka diffusion maps, Laplacian eigenmaps, intrinsic Fourier analysis) this file recovers the true, two-dimensional structure of a dataset of points embedded in 3D.

MATLAB release MATLAB 7.8 (R2009a)
05 Aug 2015 S. Arslan

### S. Arslan (view profile)

18 May 2013 Shuai

09 Apr 2013 PK

### PK (view profile)

how to add some image to this code to check dimensionality reduction

Comment only
13 Dec 2012 Kye Taylor

### Kye Taylor (view profile)

First, note that these type of algorithms use the eigenvectors of a diffusion operator to map the data to a new space. The diffusion operator is N-by-N, where N is the number of points in the dataset, so there are N possible eigenvectors to use in this mapping. Typically much fewer than N eigenvectors are used in practice because 1.) reducing dimensionality means you want fewer coordinates to describe each point and 2.) the number of degrees of freedom in a geometrically structured dataset are typically less than the number of points, making dimensionality reduction possible. It turns out that you want the eigenvectors associated with one of the diffusion operators spectrum, depending on how it is defined.

As I've defined it, the diffusion operator (matrix DO) is a sparse matrix (very few nonzero entries) so I use eigs to compute eigenvectors... DO also has eigenvalues that are real and less than or equal to 1. So I ask eigs for the 10 largest algebraic ('la') nvec eigenpairs.

Comment only
13 Dec 2012 Cat

### Cat (view profile)

Hi Kye Taylor,

Can you explain a bit about the reason why you choose to use "eigs" function with "la" option ?

Regards

Cat Le

Comment only
18 Apr 2012 Kye Taylor

### Kye Taylor (view profile)

Although the implementation is more in line with Laplacian eigenmaps, I chose to include "diffusion map" in the title since the concept is the same.

Comment only