Code covered by the BSD License  

Highlights from
Simuwave

image thumbnail

Simuwave

by

 

A Simulink library for wavelet processing on 1-D signals

rnshift(g,n/2); g=g/norm(g); sig=iconv(g,sig); else disp(sprintf('MakeSignal: I don*t recognize <<
function sig = MakeSignal(Name,n)
% MakeSignal -- Make artificial signal
%  Usage
%    sig = MakeSignal(Name,n)
%  Inputs
%    Name   string: 'HeaviSine', 'Bumps', 'Blocks',
%            'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine',
%            'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp',
%            'MishMash', 'WernerSorrows' (Heisenberg),
%            'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth),
%	     'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor'
%	     'sineoneoverx','Cusp2','SmoothCusp','Gaussian'
%	     'Piece-Polynomial' (Piece-Wise 3rd degree polynomial)
%    n      desired signal length
%  Outputs
%    sig    1-d signal
%
%  References
%    Various articles of D.L. Donoho and I.M. Johnstone
%
   if nargin > 1,
	t = (1:n) ./n;
   end
	if strcmp(Name,'HeaviSine'),
	    sig = 4.*sin(4*pi.*t);
	    sig = sig - sign(t - .3) - sign(.72 - t);
	elseif strcmp(Name,'Bumps'),
	    pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81];
	    hgt = [ 4  5   3   4  5  4.2 2.1 4.3  3.1 5.1 4.2];
	    wth = [.005 .005 .006 .01 .01 .03 .01 .01  .005 .008 .005];
	    sig = zeros(size(t));
	    for j =1:length(pos)
	       sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4;
	    end 
	elseif strcmp(Name,'Blocks'),
	    pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81];
	    hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3  (-3.1) 2.1 (-4.2)];
	    sig = zeros(size(t));
	    for j=1:length(pos)
	        sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ;
	    end
	elseif strcmp(Name,'Doppler'),
	    sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05));
	elseif strcmp(Name,'Ramp'),
	    sig = t - (t >= .37);
	elseif strcmp(Name,'Cusp'),
	    sig = sqrt(abs(t - .37));
	elseif strcmp(Name,'Sing'),
	    k = floor(n * .37);
	    sig = 1 ./abs(t - (k+.5)/n);
	elseif strcmp(Name,'HiSine'),
	    sig = sin( pi * (n * .6902) .* t);
	elseif strcmp(Name,'LoSine'),
	    sig = sin( pi * (n * .3333) .* t);
	elseif strcmp(Name,'LinChirp'),
	    sig = sin(pi .* t .* ((n .* .500) .* t));
	elseif strcmp(Name,'TwoChirp'),
	    sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t));
	elseif strcmp(Name,'QuadChirp'),
	    sig = sin( (pi/3) .* t .* (n .* t.^2));
	elseif strcmp(Name,'MishMash'),  % QuadChirp + LinChirp + HiSine
	    sig = sin( (pi/3) .* t .* (n .* t.^2)) ;
	    sig = sig +  sin( pi * (n * .6902) .* t);
	    sig = sig +  sin(pi .* t .* (n .* .125 .* t));
	elseif strcmp(Name,'WernerSorrows'),
	    sig = sin( pi .* t .* (n/2 .* t.^2)) ;
	    sig = sig +  sin( pi * (n * .6902) .* t);
	    sig = sig +  sin(pi .* t .* (n .* t));
	    pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81];
	    hgt = [ 4  5   3   4  5  4.2 2.1 4.3  3.1 5.1 4.2];
	    wth = [.005 .005 .006 .01 .01 .03 .01 .01  .005 .008 .005];
	    for j =1:length(pos)
	       sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4;
	    end 
	elseif strcmp(Name,'Leopold'),
	    sig = (t == floor(.37 * n)/n);  % Kronecker
	elseif strcmp(Name,'Riemann'),
		sqn = round(sqrt(n));
	    sig = t .* 0;  % Riemann's Non-differentiable Function
		sig((1:sqn).^2) = 1. ./ (1:sqn);
		sig = real(ifft(sig));
	elseif strcmp(Name,'HypChirps'), % Hyperbolic Chirps of Mallat's book
		alpha	= 15*n*pi/1024;
		beta    = 5*n*pi/1024;
		t  	= (1.001:1:n+.001)./n; 
		f1      = zeros(1,n);
		f2      = zeros(1,n);	
		f1  	= sin(alpha./(.8-t)).*(0.1<t).*(t<0.68);
		f2  	= sin(beta./(.8-t)).*(0.1<t).*(t<0.75);
		M  	= round(0.65*n);
		P 	= floor(M/4);
		enveloppe = ones(1,M); % the rising cutoff function 
            enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-1)*pi))/2;
            enveloppe(M-P+1:M) = reverse(enveloppe(1:P));
  		env 	= zeros(1,n);
  		env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M);
		sig     = (f1+f2).*env;
	elseif strcmp(Name,'LinChirps'), % Linear Chirps of Mallat's book
		b 	= 100*n*pi/1024;
		a 	= 250*n*pi/1024;
		t 	= (1:n)./n; 
		A1 	= sqrt((t-1/n).*(1-t));
		sig	= A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2)));
	elseif strcmp(Name,'Chirps'), % Mixture of Chirps of Mallat's book
		t 	= (1:n)./n.*10.*pi;  
  		f1 	= cos(t.^2*n/1024);
		a 	= 30*n/1024;
  		t 	= (1:n)./n.*pi;  
  		f2 	= cos(a.*(t.^3));
  		f2 	= reverse(f2);
		ix 	= (-n:n)./n.*20;
 		g 	= exp(-ix.^2*4*n/1024);
		i1 	= (n/2+1:n/2+n);
		i2 	= (n/8+1:n/8+n);
		j  	= (1:n)/n;
    		f3 	= g(i1).*cos(50.*pi.*j*n/1024);
		f4 	= g(i2).*cos(350.*pi.*j*n/1024);
		sig 	= f1+f2+f3+f4;
   	 enveloppe = ones(1,n); % the rising cutoff function 
  	 enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-ones(1,n/8))./(n/8-1)*pi))/2;
  	 enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8));
 		sig 	= sig.*enveloppe;
        elseif strcmp(Name,'Gabor'), % two modulated Gabor functions in 
				     % Mallat's book
		N = 512;	
   		t = (-N:N)*5/N;
        	j = (1:N)./N;
		g = exp(-t.^2*20);
		i1 = (2*N/4+1:2*N/4+N);
		i2 = (N/4+1:N/4+N);
		sig1 = 3*g(i1).*exp(i*N/16.*pi.*j);
		sig2 = 3*g(i2).*exp(i*N/4.*pi.*j);
   		sig = sig1+sig2;
	elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's book
		N = 1024;
		i1 = (-N+1:N);
		i1(N) = 1/100;
		i1 = i1./(N-1);
		sig = sin(1.5./(i1));
		sig = sig(513:1536);
	elseif strcmp(Name,'Cusp2'),
		N = 64;
		i1 = (1:N)./N;
		x = (1-sqrt(i1)) + i1/2 -.5;
		M = 8*N;
		sig = zeros(1,M);
		sig(M-1.5.*N+1:M-.5*N) = x;
		sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x);
		sig(3*N+1:3*N + N) = .5*ones(1,N);
	elseif strcmp(Name,'SmoothCusp'),
		sig = MakeSignal('Cusp2');
		N = 64;
		M = 8*N;
		t = (1:M)/M;
		sigma = 0.01;
		g = exp(-.5.*(abs(t-.5)./sigma).^2)./sigma./sqrt(2*pi);
		g = fftshift(g);
		sig2 = iconv(g',sig)'/M; 
   	elseif strcmp(Name,'Piece-Regular'),
		sig1=-15*MakeSignal('Bumps',n);
		t = (1:fix(n/12)) ./fix(n/12);
		sig2=-exp(4*t);
		t = (1:fix(n/7)) ./fix(n/7);
		sig5=exp(4*t)-exp(4);
		t = (1:fix(n/3)) ./fix(n/3);
		sigma=6/40;
		sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2));
		sig(1:fix(n/7))= sig6(1:fix(n/7));
		sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5));
		sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3));
		sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2));
		sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2;
		sig((fix(n/2)+2*fix(n/12)):-1:(fix(n/2)+fix(n/12)+1))=sig2;
sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=...
-ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25;
		k=fix(n/2)+2*fix(n/12)+3*fix(n/20);
		sig((k+1):(k+fix(n/7)))=sig5;
		diff=n-5*fix(n/5);
		sig(5*fix(n/5)+1:n)=sig(diff:-1:1);
		% zero-mean
		bias=sum(sig)/n;
		sig=bias-sig;
   	elseif strcmp(Name,'Piece-Polynomial'),
		t = (1:fix(n/5)) ./fix(n/5);
		sig1=20*(t.^3+t.^2+4);
		sig3=40*(2.*t.^3+t) + 100;
		sig2=10.*t.^3 + 45;
		sig4=16*t.^2+8.*t+16;
		sig5=20*(t+4);
		sig6(1:fix(n/10))=ones(1,fix(n/10));
		sig6=sig6*20;
		sig(1:fix(n/5))=sig1;
		sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2;
		sig((2*fix(n/5)+1):3*fix(n/5))=sig3;
		sig((3*fix(n/5)+1):4*fix(n/5))=sig4;
		sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1);
		diff=n-5*fix(n/5);
		sig(5*fix(n/5)+1:n)=sig(diff:-1:1);
		%sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-ones(1,fix(n/10))*20;
		sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*10;
		sig((n-fix(n/10)+1):(n+fix(n/20)-fix(n/10)))=ones(1,fix(n/20))*150;
		% zero-mean
		bias=sum(sig)/n;
		sig=sig-bias;
   	elseif strcmp(Name,'Gaussian'),
		sig=GWN(n,beta);
		g=zeros(1,n);
		lim=alpha*n;
		mult=pi/(2*alpha*n);
		g(1:lim)=(cos(mult*(1:lim))).^2;
		g((n/2+1):n)=g((n/2):-1:1);
		g = rnshift(g,n/2);
		g=g/norm(g);
		sig=iconv(g,sig);
       else
	    disp(sprintf('MakeSignal: I don*t recognize <<%s>>',Name))
	    disp('Allowable Names are:')
	       disp('HeaviSine'),
	       disp('Bumps'),
	       disp('Blocks'),
	       disp('Doppler'),
	       disp('Ramp'),
	       disp('Cusp'),
	       disp('Crease'),
	       disp('Sing'),
	       disp('HiSine'),
	       disp('LoSine'),
	       disp('LinChirp'),
	       disp('TwoChirp'),
	       disp('QuadChirp'),
	       disp('MishMash'),
	       disp('WernerSorrows'),
	       disp('Leopold'),
	       disp('Sing'),
	       disp('HiSine'),
	       disp('LoSine'),
	       disp('LinChirp'),
	       disp('TwoChirp'),
	       disp('QuadChirp'),
	       disp('MishMash'),
	       disp('WernerSorrows'),
	       disp('Leopold'),
	       disp('Riemann'),
	       disp('HypChirps'),
	       disp('LinChirps'),
	       disp('Chirps'),
	       disp('sineoneoverx'),
	       disp('Cusp2'),
	       disp('SmoothCusp'),
	       disp('Gabor'),
	       disp('Piece-Regular');
	       disp('Piece-Polynomial');
	       disp('Gaussian');
	end
	
%
% Originally made by David L. Donoho.
% Function has been enhanced.
    
 
 
%
%  Part of Wavelab Version 850
%  Built Tue Jan  3 13:20:39 EST 2006
%  This is Copyrighted Material
%  For Copying permissions see COPYING.m
%  Comments? e-mail wavelab@stat.stanford.edu 

Contact us