Code covered by the BSD License  

Highlights from
2D Bandwidth Estimator for KDE

image thumbnail
from 2D Bandwidth Estimator for KDE by Matej Kristan
2D kernel density estimator from weighted data.

conf2mahal(c, d)
% CONF2MAHAL - Translates a confidence interval to a Mahalanobis
%              distance.  Consider a multivariate Gaussian
%              distribution of the form
%
%   p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C)))
%
%              where MD(x, m, P) is the Mahalanobis distance from x
%              to m under P:
%
%                 MD(x, m, P) = (x - m) * P * (x - m)'
%
%              A particular Mahalanobis distance k identifies an
%              ellipsoid centered at the mean of the distribution.
%              The confidence interval associated with this ellipsoid
%              is the probability mass enclosed by it.  Similarly,
%              a particular confidence interval uniquely determines
%              an ellipsoid with a fixed Mahalanobis distance.
%
%              If X is an d dimensional Gaussian-distributed vector,
%              then the Mahalanobis distance of X is distributed
%              according to the Chi-squared distribution with d
%              degrees of freedom.  Thus, the Mahalanobis distance is
%              determined by evaluating the inverse cumulative
%              distribution function of the chi squared distribution
%              up to the confidence value.
%
% Usage:
% 
%   m = conf2mahal(c, d);
%
% Inputs:
%
%   c    - the confidence interval
%   d    - the number of dimensions of the Gaussian distribution
%
% Outputs:
%
%   m    - the Mahalanobis radius of the ellipsoid enclosing the
%          fraction c of the distribution's probability mass
%
% See also: MAHAL2CONF

% Author: Mark A. Paskin (2002), (modified)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function m = conf2mahal(c, d)

m = chi2inv(c, d);
% pr = 0.95 ; c = (1 - pr)/2 ; 
% m = norminv([c 1-c],0,1) ;

Contact us