function [x,y]=geom(bs,s)
%GEOM Gives geometry data for the geom PDE model.
%
% NE=GEOM gives the number of boundary segments
%
% D=GEOM(BS) gives a matrix with one column for each boundary segment
% specified in BS.
% Row 1 contains the start parameter value.
% Row 2 contains the end parameter value.
% Row 3 contains the number of the left-hand regions.
% Row 4 contains the number of the right-hand regions.
%
% [X,Y]=GEOM(BS,S) gives coordinates of boundary points. BS specifies the
% boundary segments and S the corresponding parameter values. BS may be
% a scalar.
nbs=4;
if nargin==0,
x=nbs; % number of boundary segments
return
end
d=[
0 0 0 0 % start parameter value
1 1 1 1 % end parameter value
1 1 1 1 % left hand region
0 0 0 0 % right hand region
];
bs1=bs(:)';
if find(bs1<1 | bs1>nbs),
error('Non-existent boundary segment number')
end
if nargin==1,
x=d(:,bs1);
return
end
x=zeros(size(s));
y=zeros(size(s));
[m,n]=size(bs);
if m==1 & n==1,
bs=bs*ones(size(s)); % expand bs
elseif m~=size(s,1) | n~=size(s,2),
error('bs must be scalar or of same size as s');
end
if ~isempty(s),
% boundary segment 1
ii=find(bs==1);
if length(ii)
x(ii)=(1-(0))*(s(ii)-d(1,1))/(d(2,1)-d(1,1))+(0);
y(ii)=(0-(0))*(s(ii)-d(1,1))/(d(2,1)-d(1,1))+(0);
end
% boundary segment 2
ii=find(bs==2);
if length(ii)
x(ii)=(1-(1))*(s(ii)-d(1,2))/(d(2,2)-d(1,2))+(1);
y(ii)=(1-(0))*(s(ii)-d(1,2))/(d(2,2)-d(1,2))+(0);
end
% boundary segment 3
ii=find(bs==3);
if length(ii)
x(ii)=(0-(1))*(s(ii)-d(1,3))/(d(2,3)-d(1,3))+(1);
y(ii)=(1-(1))*(s(ii)-d(1,3))/(d(2,3)-d(1,3))+(1);
end
% boundary segment 4
ii=find(bs==4);
if length(ii)
x(ii)=(0-(0))*(s(ii)-d(1,4))/(d(2,4)-d(1,4))+(0);
y(ii)=(0-(1))*(s(ii)-d(1,4))/(d(2,4)-d(1,4))+(1);
end
end