Code covered by the BSD License  

Highlights from
Deep Learning Toolbox

image thumbnail

Deep Learning Toolbox

by

 

Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets and more. With examples.

xunit.utils.parseFloatAssertInputs(varargin)
function params = parseFloatAssertInputs(varargin)
%parseFloatAssertInputs Parse inputs for floating-point assertion functions.
%   params = parseFloatAssertInputs(varargin) parses the input arguments for
%   assertElementsAlmostEqual, assertVectorsAlmostEqual, and compareFcn. It
%   returns a parameter struct containing the fields:
%
%       A    B    Message    ToleranceType    Tolerance    FloorTolerance

%   Steven L. Eddins
%   Copyright 2008-2009 The MathWorks, Inc.

error(nargchk(2, 6, nargin, 'struct'));

params = struct('A', {[]}, 'B', {[]}, 'ToleranceType', {[]}, ...
    'Tolerance', {[]}, 'FloorTolerance', {[]}, 'Message', {''});

% The first two input arguments are always A and B.
params.A = varargin{1};
params.B = varargin{2};
varargin(1:2) = [];

% If the last argument is a message string, process it and remove it from the list.
if (numel(varargin) >= 1) && ischar(varargin{end}) && ...
        ~any(strcmp(varargin{end}, {'relative', 'absolute'}))
    params.Message = varargin{end};
    varargin(end) = [];
else
    params.Message = '';
end

try
    epsilon = max(eps(class(params.A)), eps(class(params.B)));
catch
    epsilon = eps;
end

if numel(varargin) < 3
    % floor_tol not specified; set default.
    params.FloorTolerance = sqrt(epsilon);
else
    params.FloorTolerance = varargin{3};
end

if numel(varargin) < 2
    % tol not specified; set default.
    params.Tolerance = sqrt(epsilon);
else
    params.Tolerance = varargin{2};
end

if numel(varargin) < 1
    % tol_type not specified; set default.
    params.ToleranceType = 'relative';
else
    params.ToleranceType = varargin{1};
end

Contact us