Highlights from
Deep Learning Toolbox

  • F=makeLMfilters
    Returns the LML filter bank of size 49x49x48 in F. To convolve an
  • X=flipall(X)
  • allcomb(varargin)
    ALLCOMB - All combinations
  • caeapplygrads(cae)
  • caebbp(cae)
  • caebp(cae, y)
  • caedown(cae)
  • caenumgradcheck(cae, x, y)
  • caesdlm(cae, opts, m)
  • caetrain(cae, x, opts)
    caenumgradcheck(cae,x1,x2);
  • caeup(cae, x)
  • cnnapplygrads(net, opts)
  • cnnbp(net, y)
  • cnnff(net, x)
  • cnnnumgradcheck(net, x, y)
  • cnnsetup(net, x, y)
  • cnntest(net, x, y)
  • cnntrain(net, x, y, opts)
  • dbnsetup(dbn, x, opts)
  • dbntrain(dbn, x, opts)
  • dbnunfoldtonn(dbn, output...
    DBNUNFOLDTONN Unfolds a DBN to a NN
  • expand(A, S)
    EXPAND Replicate and tile each element of an array, similar to repmat.
  • f=tanh_opt(A)
  • flicker(X,fps)
  • fliplrf(x)
    FLIPLR Flip matrix in left/right direction.
  • flipudf(x)
    FLIPUD Flip matrix in up/down direction.
  • im2patches(im,m,n)
  • isOctave()
    detects if we're running Octave
  • max3d(X, M)
  • myOctaveVersion()
    return OCTAVE_VERSION or 'undefined' as a string
  • nnapplygrads(nn)
    NNAPPLYGRADS updates weights and biases with calculated gradients
  • nnbp(nn)
    NNBP performs backpropagation
  • nnchecknumgrad(nn, x, y)
  • nneval(nn, loss, train_x,...
    NNEVAL evaluates performance of neural network
  • nnff(nn, x, y)
    NNFF performs a feedforward pass
  • nnpredict(nn, x)
  • nnsetup(architecture)
    NNSETUP creates a Feedforward Backpropagate Neural Network
  • nntest(nn, x, y)
  • nntrain(nn, train_x, trai...
    NNTRAIN trains a neural net
  • nnupdatefigures(nn,fhandl...
    NNUPDATEFIGURES updates figures during training
  • normalize(x, mu, sigma)
  • patches2im(patches,n,m)
  • r=visualize(X, mm, s1, s2)
    FROM RBMLIB http://code.google.com/p/matrbm/
  • randp(P,varargin)
    RANDP - pick random values with relative probability
  • rbmdown(rbm, x)
  • rbmtrain(rbm, x, opts)
  • rbmup(rbm, x)
  • rnd(x)
  • saesetup(size)
  • saetrain(sae, x, opts)
  • scaesetup(cae, x, opts)
  • scaetrain(scae, x, opts)
  • sigm(P)
  • sigmrnd(P)
  • softmax(eta)
  • test_cnn_gradients_are_nu...
  • test_example_CNN
    ex1 Train a 6c-2s-12c-2s Convolutional neural network
  • test_example_DBN
    ex1 train a 100 hidden unit RBM and visualize its weights
  • test_example_NN
    normalize
  • test_example_SAE
    ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN
  • test_nn_gradients_are_num...
  • whiten(X, fudgefactor)
  • x=randcorr(n,R)
    RANDCORR Generates corremlated random variables
  • zscore(x)
  • caeexamples.m
    mnist data
  • runalltests.m
  • View all files
image thumbnail

Deep Learning Toolbox

by

 

24 Sep 2012 (Updated )

Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets and more. With examples.

All files for Deep Learning Toolbox
/rasmusbergpalm-DeepLearnToolbox-9faf641/.travis.yml
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caeapplygrads.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caebbp.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caebp.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caedown.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caeexamples.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caenumgradcheck.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caesdlm.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caetrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/caeup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/max3d.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/scaesetup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CAE/scaetrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnnapplygrads.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnnbp.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnnff.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnnnumgradcheck.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnnsetup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnntest.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CNN/cnntrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/CONTRIBUTING.md
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/dbnsetup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/dbntrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/dbnunfoldtonn.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/rbmdown.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/rbmtrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/DBN/rbmup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/LICENSE
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnapplygrads.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnbp.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnchecknumgrad.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nneval.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnff.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnpredict.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnsetup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nntest.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nntrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/NN/nnupdatefigures.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/README.md
/rasmusbergpalm-DeepLearnToolbox-9faf641/README_header.md
/rasmusbergpalm-DeepLearnToolbox-9faf641/REFS.md
/rasmusbergpalm-DeepLearnToolbox-9faf641/SAE/saesetup.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/SAE/saetrain.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/create_readme.sh
/rasmusbergpalm-DeepLearnToolbox-9faf641/data/mnist_uint8.mat
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/runalltests.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_cnn_gradients_are_numerically_correct.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_example_CNN.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_example_DBN.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_example_NN.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_example_SAE.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/tests/test_nn_gradients_are_numerically_correct.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/allcomb.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/expand.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/flicker.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/flipall.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/fliplrf.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/flipudf.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/im2patches.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/isOctave.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/makeLMfilters.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/myOctaveVersion.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/normalize.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/patches2im.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/randcorr.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/randp.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/rnd.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/sigm.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/sigmrnd.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/softmax.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/tanh_opt.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/visualize.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/whiten.m
/rasmusbergpalm-DeepLearnToolbox-9faf641/util/zscore.m

Contact us