Code covered by the BSD License

# MatLab Solutions: "Introduction to Digital Signal Processing: A Computer Laboratory Textbook".

### Ilias Konsoulas (view profile)

29 Oct 2012 (Updated )

These files are the MatLab solutions of exercises contained in the above DSP lab textbook.

ex411.m
% Exercise 4.1.1. Ideal Sampling (Frequency Domain).

clc; clear; close all;

%% Step (a). Sample the analog signal xa(t) with sampling period Ts = 1,
% in order to generate x[n].

% 'analog' signal definition.
f = 1000/12;    % signal frequency.
Duration = 2; % in sec. This is how long the 'analog' signal lasts.
ta = 0:(1/10000):Duration;    % sample times
xa = sin(2*pi*f*ta);    %signal definition

% sampled signal creation.
fs = 1000;        	        % 1 kHz sampling frequency
Ts1 = 1/fs;           	    % sample period = 1 msec.
t1 = 0:Ts1:Duration; % sample times
x = sin(2*pi*f*t1);      % signal definition

%plot a fraction of the signal against time
T_max = 0.2;  % duration of signal to plot

figure('Name','Exercise 4.1.1. Ideal Sampling (Frequency Domain)');
subplot(2,1,1);
stem(t1,x,'r*');    % plot sampled signal
hold on

subplot(2,1,1)
plot(ta,xa);   % plot 'analog' signal
title(['x(t) = sin(2000\pit/12) or ',num2str(f),' Hz sine sampled at ',num2str(fs),' Hz']);
xlabel('Time (sec)')
ylabel('x[n]')
axis([0,T_max,-1.2,1.2]);
grid on;

%% Calculate the DTFT of x[n].
n = 0: length(x)-1;
[w  X] = my_DTFT(x,n);

%% Plot the DTFT magnitude of x[n].
subplot(2,1,2);
plot(w,abs(X),'r');
hold on;
line([-2*pi*f*Ts1 -2*pi*f*Ts1], [0 max(abs(X))]);
line([2*pi*f*Ts1 2*pi*f*Ts1], [0 max(abs(X))]);
title(['\Omega_0Ts = ',num2str(2*pi*f*Ts1),' = \pi/6 rad']);
set(gca,'XTick',-pi:pi/4:pi);
set(gca,'XTickLabel',{'-pi','-3*pi/4','-pi/2','-pi/4','0','pi/4','pi/2','3pi/4','pi' });
ylabel('|{\itX}(j\omega)|');
xlim([-pi pi]);
axis tight;
grid on;

%% Step (b)
Ts  = [4 10 15 20 24 30 39]*1e-3;
wd = ['2\pi/3    '; '5\pi/3    '; '2\pi+\pi/2'; '3\pi+\pi/3'; '4\pi      '; '5\pi      '; '6\pi+\pi/2';];

for i=1:7

% sampled signal creation.
t1 = 0:Ts(i):Duration;   % sampling instants
x = zeros(size(t1));
x = sin(2*pi*f*t1);    % signal definition

figure('Name','Exercise 4.1.1. Ideal Sampling (Frequency Domain)');
subplot(2,1,1);
stem(t1,x,'r*');    % plot sampled signal
hold on

subplot(2,1,1)
plot(ta,xa);   % plot 'analog' signal first
title([num2str(f),' Hz sine sampled at ',num2str(1/Ts(i)),' Hz']);
xlabel('Time (sec)')
ylabel('x[n]')
axis([0,T_max,-1.2,1.2]);
grid on;

% Calculate the DTFT of x[n].
w = [-5*pi 5*pi];
n = 0: length(x)-1;
[w1 X] = my_DTFT2(x,n,w);

% Plot the DTFT magnitude of x[n].
subplot(2,1,2);
plot(w1,abs(X),'r');

if 2*pi*f*Ts(i) <= pi
hold on;
line([-2*pi*f*Ts(i) -2*pi*f*Ts(i)], [0 max(abs(X))]);
line([ 2*pi*f*Ts(i)  2*pi*f*Ts(i)], [0 max(abs(X))]);
title(['\Omega_0T_s = ',num2str(2*pi*f*Ts(i)),' = ', wd(i,:),'< \pi rad']);
else
title(['\Omega_0T_s = ',num2str(2*pi*f*Ts(i)),' = ', wd(i,:),' > \pi rad (aliasing)']);
end

ylabel('|{\itX}(j\omega)|');
set(gca,'XTick',-5*pi:pi:5*pi);
set(gca,'XTickLabel',{'-5pi','-4*pi','-3pi','-2pi','-pi','0','pi','2pi','3pi','4pi','5pi' });
axis tight;
grid on;

end

%% Step (c). Display the Nyquist rate.

disp(['The Nyquist rate for xa(t) is: fs = ' , num2str(2*f), ' samples/sec']);