Code covered by the BSD License  

Highlights from
MatLab Solutions: "Introduction to Digital Signal Processing: A Computer Laboratory Textbook".

image thumbnail

MatLab Solutions: "Introduction to Digital Signal Processing: A Computer Laboratory Textbook".

by

 

29 Oct 2012 (Updated )

These files are the MatLab solutions of exercises contained in the above DSP lab textbook.

ex632.m
% Exercise 6.3.2. Inverse FFT.

clc; clear; close all;

%% c. Create an 8-point ramp sequence.

seq = 0:8;
% seq = randn(1,128) + 1i*randn(1,128);

Samples = size(seq,2);

x2 = method2_idft(seq);

x3 = method3_idft(seq);  %Try x2 = ifft(seq); Just for checking purposes.

% Plot the results.
% Plot the real and imaginary parts of the DFT of x1[n]:
k = 0:Samples - 1;
figure('Name','Exercise 6.3.2. Inverse FFT');
subplot(2,1,1);
stem(k,real(x2));
title('\Ree\{x_2[n]\} (Method II) (circle) and \Ree\{x_3[n]\} (Method III) (dot)');
xlabel('Sample Number n');
axis tight;
grid on;
hold on;

subplot(2,1,2);
stem(k,imag(x2),'r');
title(['\Imm\{x_2[n]\} (Method II) (circle) and \Imm\{x_3[n]\} (Method III) (dot)']);
xlabel('Sample Number n');
axis tight;
grid on;
hold on;

% Now compare the results by plotting them altogether.
subplot(2,1,1);
stem(k,real(x3),'b.');
xlabel('Sample Number n');
axis tight;
grid on;

subplot(2,1,2);
stem(k,imag(x3),'r.');
xlabel('Sample Number n');
axis tight;
grid on;

Contact us