function sol = exam8
% This is the suitcase problem from Suherman, et al.,
% Effect of Human Response Time on Rocking Instability
% of a Two-Wheeled Suitcase, J. of Sound and Vibration,
% Vol. 207 (5), 1997, 617-625. Event location is used to
% find when the wheels impact the ground and when the
% suitcase has fallen over. The parameter values are those
% used to generate Figure 3a in the reference.
% Copyright 2002, The MathWorks, Inc.
state = +1;
opts = ddeset('RelTol',1e-5,'AbsTol',1e-5,...
'Events',@exam8e);
sol = dde23(@exam8f,0.1,[0; 0],[0 12],opts,state);
ref = [4.516757065, 9.751053145, 11.670393497];
fprintf('\nKind of Event: dde23 reference\n');
event = 0;
while sol.x(end) < 12
event = event + 1;
if sol.ie(end) == 1
fprintf('A wheel hit the ground. %10.4f %10.6f\n',...
sol.x(end),ref(event));
state = - state;
opts = ddeset(opts,'InitialY',[ 0; 0.913*sol.y(2,end)]);
sol = dde23(@exam8f,0.1,sol,[sol.x(end) 12],opts,state);
else
fprintf('The suitcase fell over. %10.4f %10.6f\n',...
sol.x(end),ref(event));
break;
end
end
figure
plot(sol.y(1,:),sol.y(2,:))
title('Suitcase problem.')
xlabel('\theta(t)')
ylabel('\theta''(t)')
%-----------------------------------------------------------------------
function yp = exam8f(t,y,Z,state)
%EXAM8F The derivative function for the Example 8 of the DDE Tutorial.
gamma = 0.248;
beta = 1;
A = 0.75;
omega = 1.37;
eta = asin(gamma/A);
ylag = Z(:,1);
yp = [y(2); 0];
yp(2) = sin(y(1)) - state*gamma*cos(y(1)) - ...
beta*ylag(1) + A*sin(omega*t + eta);
%-----------------------------------------------------------------------
function [value,isterminal,direction] = exam8e(t,y,Z,state)
%EXAM8E The event function for the Example 8 of the DDE Tutorial.
value = [y(1); abs(y(1))-pi/2];
isterminal = [1; 1];
direction = [0; 0];