Code covered by the BSD License  

Highlights from
Tutorial on solving DDEs with DDE23

  • exam1
  • exam1
  • exam2
  • exam2
  • exam3
  • exam3
  • exam4
  • exam4
  • exam5
  • exam5
  • exam6 This is a demonstration problem for CTMS/BD in
  • exam6 This is a demonstration problem for CTMS/BD in
  • exam7 An example from C. Marriott and C. DeLisle, Effects
  • exam7 An example from C. Marriott and C. DeLisle, Effects
  • exam8 This is the suitcase problem from Suherman, et al.,
  • exam8 This is the suitcase problem from Suherman, et al.,
  • exer1 Example 1 of K.W. Neves, Automatic integration
  • exer1 Example 1 of K.W. Neves, Automatic integration
  • exer2 Example of J.D. Farmer, Chaotic Attractors of an
  • exer2 Example of J.D. Farmer, Chaotic Attractors of an
  • exer3 Wheldon's model of chronic granuloctic leukemia
  • exer3 Wheldon's model of chronic granuloctic leukemia
  • exer5
  • exer5
  • exer6 Sample problem of ARCHI manual. The absolute error
  • exer6 Sample problem of ARCHI manual. The absolute error
  • exer7 Marchuk immunology model of E. Hairer, S.P. Norsett, and
  • exer7 Marchuk immunology model of E. Hairer, S.P. Norsett, and
  • prob1 This system of ODE's is taken from 'An Introduction to Nuermcial Methods
  • prob1 This system of ODE's is taken from 'An Introduction to Nuermcial Methods
  • prob2 This problem considers a cardiovascular model, which can be found in
  • prob2 This problem considers a cardiovascular model, which can be found in
  • prob2b This problem considers a cardiovascular model, which can be found in
  • prob2b This problem considers a cardiovascular model, which can be found in
  • prob3 This problem is epidemic model due to Cooke, more information can be
  • prob3 This problem is epidemic model due to Cooke, more information can be
  • prob4 This problem is an epidemic model due to Cooke et alia, more information
  • prob4 This problem is an epidemic model due to Cooke et alia, more information
  • prob5 This problem population growth model due to Cooke et alia, more information
  • prob5 This problem population growth model due to Cooke et alia, more information
  • View all files

Tutorial on solving DDEs with DDE23

by

 

22 Aug 2003 (Updated )

Solving delay differential equations with DDE23. Tutorial + Examples.

exam1
function sol = exam1
% This is example 3 of D.R. Wille' and C.T.H. Baker,
% DELSOL--a numerical code for the solution of systems
% of delay-differential equations, Appl. Numer. Math., 
% 9 (992) 223-234. 

% Copyright 2004, The MathWorks, Inc.

sol = dde23(@exam1f,[1, 0.2],ones(3,1),[0, 5]);
figure
plot(sol.x,sol.y);
title('Example 3 of Wille'' and Baker.')
xlabel('time t');
ylabel('y(t)');

%-----------------------------------------------------------------------

function yp = exam1f(t,y,Z)
%EXAM1F  The derivative function for the Example 1 of the DDE Tutorial.
ylag1 = Z(:,1);
ylag2 = Z(:,2);
yp = [ ylag1(1)
       ylag1(1) + ylag2(2)
       y(2)                ];

Contact us