function ilt = euler_inversion(f_s, t, M)
% ilt = euler_inversion(f_s, t, [M])
%
% Returns an approximation to the inverse Laplace transform of function
% handle f_s evaluated at each value in t (1xn) using the Euler method as
% summarized in the source below.
%
% This implementation is very coarse; use euler_inversion_sym for better
% precision. Further, please see example_inversions.m for examples.
%
% f_s: Handle to function of s
% t: Times at which to evaluate the inverse Laplace transformation of f_s
% M: Optional, number of terms to sum for each t (64 is a good guess);
% highly oscillatory functions require higher M, but this can grow
% unstable; see test_talbot.m for an example of stability.
%
% Abate, Joseph, and Ward Whitt. "A Unified Framework for Numerically
% Inverting Laplace Transforms." INFORMS Journal of Computing, vol. 18.4
% (2006): 408-421. Print.
%
% The paper is also online: http://www.columbia.edu/~ww2040/allpapers.html.
%
% Tucker McClure
% Copyright 2012, The MathWorks, Inc.
% Make sure t is n-by-1.
if size(t, 1) == 1
t = t';
elseif size(t, 2) > 1
error('Input times, t, must be a vector.');
end
% Set M to 64 if user didn't specify an M.
if nargin < 3
M = 32;
end
% Vectorized Talbot's algorithm
bnml = @(n, z) prod((n-(z-(1:z)))./(1:z));
xi = [0.5, ones(1, M), zeros(1, M-1), 2^-M];
for k = 1:M-1
xi(2*M-k + 1) = xi(2*M-k + 2) + 2^-M * bnml(M, k);
end
k = 0:2*M; % Iteration index
beta = M*log(10)/3 + 1i*pi*k;
eta = (1-mod(k, 2)*2) .* xi;
% Make a mesh so we can do this entire calculation across all k for all
% given times without a single loop (it's faster this way).
[beta_mesh, t_mesh] = meshgrid(beta, t);
eta_mesh = meshgrid(eta, t);
% Finally, calculate the inverse Laplace transform for each given time.
ilt = 10^(M/3)./t ...
.* sum(eta_mesh .* real(arrayfun(f_s, beta_mesh./t_mesh)), 2);
end