Code covered by the BSD License  

Highlights from
Closest Approach Between the Earth and Heliocentric Objects

Closest Approach Between the Earth and Heliocentric Objects

by

David Eagle (view profile)

 

06 Dec 2012 (Updated )

MATLAB script that predicts closest approach between the Earth and heliocentric objects.

oeprint(mu, oev)
function oeprint(mu, oev)

% print six classical orbital elements
% (orbital period in days, sma in AUs)

% input

%  mu      = gravitational constant (au^3/day^2)
%  oev(1)  = semimajor axis (au)
%  oev(2)  = orbital eccentricity (non-dimensional)
%            (0 <= eccentricity < 1)
%  oev(3)  = orbital inclination (radians)
%            (0 <= inclination <= pi)
%  oev(4)  = argument of periapsis (radians)
%            (0 <= argument of periapsis <= 2 pi)
%  oev(5)  = right ascension of ascending node (radians)
%            (0 <= raan <= 2 pi)
%  oev(6)  = true anomaly (radians)
%            (0 <= true anomaly <= 2 pi)

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rtd = 180 / pi;

% unload orbital elements array

sma = oev(1);
ecc = oev(2);
inc = oev(3);
argper = oev(4);
raan = oev(5);
tanom = oev(6);

arglat = mod(tanom + argper, 2.0 * pi);

period = 2.0 * pi * sma * sqrt(sma / mu);

% print orbital elements

fprintf ('\n        sma (au)             eccentricity        inclination (deg)         argper (deg)');

fprintf ('\n %+16.14e  %+16.14e  %+16.14e  %+16.14e \n', sma, ecc, inc * rtd, argper * rtd);

fprintf ('\n        lan (deg)        true anomaly (deg)         arglat (deg)          period (days)');
        
fprintf ('\n %+16.14e  %+16.14e  %+16.14e  %+16.14e \n', raan * rtd, tanom * rtd, arglat * rtd, period);
        



Contact us