# MATLAB Simulations for Radar Systems Design

### Bassem Mahafza (view profile)

• 1 file
• 4.36765

11 Sep 2003 (Updated )

MATLAB Simulations for Radar Systems Design

fxdwght.m
```% this is the input vector to the tracker
%inp=[10,15,25,30,40,45,46,48,54,55,60,65,68,69,73,75,80,84,88,90];
% this is the number of data points
N=2000;
del = 1/5000;
t= 0:del:1;
%inp=(1+.2 .* t + .1 .*t.^2+randn(size(t))) ./10;
inp=(1+.2 .* t + .1 .*t.^2);
rn=1;
% read the intial estimate for the state vector
X=[1,.1,.01]';
% this is the update interval in seconds
T=1;
% this is the value of theta
theta=.8;
%compute values for alpha, beta, gamma
w1=1-(theta^3);
w2=1.5*(1+theta)*((1-theta)^2)/T;
w3=((1-theta)^3)/(T^2);
% setup the transition matrix PHI
PHI=[1 T (T^2)/2;0 1 T;0 0 1];
while rn < N ;
%use the transition matrix to predict the next state
XN=PHI*X;
%inp(rn)=inp(rn)+normrnd(0,.00001);
error=inp(rn)-XN(1);
residual(rn)=error;
tmp1= w1*error;
tmp2= w2*error;
tmp3= w3*error;
% compute the next state
X(1)=XN(1)+tmp1;
X(2)=XN(2)+tmp2;
X(3)=XN(3)+tmp3;
estimate(rn)=X(1);
rn=rn+1;
end
plot(residual)
figure(2)
plot(inp)
figure(3)
plot(estimate)
```