function varargout = ProjetoMM1C(varargin)
% PROJETOMM1C M-file for ProjetoMM1C.fig
% PROJETOMM1C, by itself, creates a new PROJETOMM1C or raises the existing
% singleton*.
%
% H = PROJETOMM1C returns the handle to a new PROJETOMM1C or the handle to
% the existing singleton*.
%
% PROJETOMM1C('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PROJETOMM1C.M with the given input arguments.
%
% PROJETOMM1C('Property','Value',...) creates a new PROJETOMM1C or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before ProjetoMM1C_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to ProjetoMM1C_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help ProjetoMM1C
% http://www2.ee.ufpe.br/codec/tapers.html
%authors: R. Santos de Souza, H.M. de Oliveira, UFPE
% Last Modified by GUIDE v2.5 09-Apr-2013 09:22:32
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @ProjetoMM1C_OpeningFcn, ...
'gui_OutputFcn', @ProjetoMM1C_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before ProjetoMM1C is made visible.
function ProjetoMM1C_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ProjetoMM1C (see VARARGIN)
% Choose default command line output for ProjetoMM1C
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% This sets up the initial plot - only do when we are invisible
% so window can get raised using ProjetoMM1C.
x = -2*pi:.01:2*pi;
y = 0;
j = 1;
for i = -2*pi:.01:2*pi
r(j)=0;
j = j + 1;
end;
if strcmp(get(hObject,'Visible'),'off')
axes(handles.axes1);
plot(x,y);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2);
plot(x,r);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes3);
plot(x,r);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
end
% UIWAIT makes ProjetoMM1C wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = ProjetoMM1C_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
N = str2double(get(handles.ntermos,'String'));
selected_function = get(handles.popupmenu1, 'Value');
selected_tapper = get(handles.popupmenu2, 'Value');
flag = 0;
switch selected_function
case 1 %Onda quadrada
r = -2*pi:.001:2*pi;
s = (square(r) + 1)/2;
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sum = sum + (-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
f(i)=(1/2) + sum;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
ft(i)=(1/2) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
ft(i)=(1/2) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
ft(i)=(1/2) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
ft(i)=(1/2) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
end
ft(i)=(1/2) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
case 2 %Porta
r = -2*pi:.001:2*pi;
s = rectpuls(r,pi);
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sum = sum + (2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
f(i)=(1/4) + sum;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
ft(i)=(1/4) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
ft(i)=(1/4) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
ft(i)=(1/4) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
ft(i)=(1/4) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
end
ft(i)=(1/4) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
case 3 %Rampa
r = -4*pi:.001:4*pi;
s = sawtooth(r,0);
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sum = sum + (1/(n*pi))*sin(n*t);
end
f(i)= 2 * sum;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(1/(n*pi))*sin(n*t);
end
ft(i)= 2*sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(1/(n*pi))*sin(n*t);
end
ft(i)= 2*sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(1/(n*pi))*sin(n*t);
end
ft(i)= 2*sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(1/(n*pi))*sin(n*t);
end
ft(i)= 2*sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-4*pi:0.001:4*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(1/(n*pi))*sin(n*t);
end
ft(i)= 2*sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-13 13 -1.2 1.2]);
set(gca,'XTick',-4*pi:pi:4*pi);
set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
zoom on;
end;
case 4 %Senoide retificada em meia-onda
r = -2*pi:.001:2*pi;
j=1;
for i=-2*pi:.001:2*pi
if sin(2*i)>0
s(j) = sin(2*i);
else
s(j)=0;
end;
j=j+1;
end;
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sum = sum + (2/(pi*(1-n*n)))*cos(2*n*t);
end
f(i)= 1/pi + sum + (1/2)*sin(2*t) ;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sumt = sumt + (1 - n/(N+1))*(2/(pi*(1-n*n)))*cos(2*n*t);
end
ft(i)=(1/pi) + sumt + (1 - 1/(N+1))*(1/2)*sin(2*t);
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
end
ft(i)=(1/pi) + sumt + [(1/2)*(1 + cos(pi/N))]*(1/2)*sin(2*t);
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(pi*(1-n*n)))*cos(2*n*t);
end
ft(i)=(1/pi) + sumt + [sin((pi)/(N+1/2))/((pi)/(N+1/2))]*(1/2)*sin(2*t);
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
end
ft(i)=(1/pi) + sumt + [1 - (1/(N*N))]*(1/2)*sin(2*t);
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=2:2:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
end
ft(i)=(1/pi) + sumt + [exp((-1)/(2*N*N))]*(1/2)*sin(2*t);
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
case 5 %Senoide retificada em onda-completa
r = -2*pi:.001:2*pi;
s = abs(sin(r));
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sum = sum + (4/(pi*(1-4*n*n)))*cos(2*n*t);
end
f(i)= 2/pi + sum ;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(4/(pi*(1-4*n*n)))*cos(2*n*t);
end
ft(i)=(2/pi) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
end
ft(i)=(2/pi) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
end
ft(i)=(2/pi) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
end
ft(i)=(2/pi) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
end
ft(i)=(2/pi) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
case 6 %Trem de pulsos retangulares
r = -2*pi:.001:2*pi;
d = -2*pi:pi:2*pi;
s = pulstran(r,d,'rectpuls',0.5);
axes(handles.axes1); %Plotagem do grafico selecionado em Axes1
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2); %Plotagem da representacao por Serie de Fourier em Axes2
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sum = sum + (2/(pi*n))*sin(n/2)*cos(2*n*t);
end
f(i)= 1/(2*pi) + sum ;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(2/(pi*n))*sin(n/2)*cos(2*n*t);
end
ft(i)=(1/(2*pi)) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
end
ft(i)=(1/(2*pi)) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
end
ft(i)=(1/(2*pi)) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
end
ft(i)=(1/(2*pi)) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
end
ft(i)=(1/(2*pi)) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
case 7 %Triangulo
r = -2*pi:.001:2*pi;
s = tripuls(r,pi);
axes(handles.axes1);
plot(r,s);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
axes(handles.axes2);
i=1;
sum=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sum = sum + (8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
f(i)= 1/8 + sum ;
i=i+1;
sum = 0;
end;
f=f';
plot(r,f);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
switch selected_tapper
case 1 %Fejer
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + (1 - n/(N+1))*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
ft(i)=(1/8) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 2 %Hamming
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
ft(i)=(1/8) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 3 %Lanczos
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
ft(i)=(1/8) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 4 %Parzen
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [1 - ((n*n)/(N*N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
ft(i)=(1/8) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
case 5 %Weierstrass
axes(handles.axes3); %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
i=1;
sumt=0;
for t=-2*pi:0.001:2*pi
for n=1:N
sumt = sumt + [exp((-n*n)/(2*N*N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
end
ft(i)=(1/8) + sumt;
i=i+1;
sumt = 0;
end;
ft = ft';
plot(r,ft);
axis([-6.5 6.5 -1.2 1.2]);
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
zoom on;
end;
end;
% --------------------------------------------------------------------
function FileMenu_Callback(hObject, eventdata, handles)
% hObject handle to FileMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function OpenMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to OpenMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
file = uigetfile('*.fig');
if ~isequal(file, 0)
open(file);
end
% --------------------------------------------------------------------
function PrintMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to PrintMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
printdlg(handles.axes2)
% --------------------------------------------------------------------
function CloseMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to CloseMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...
['Close ' get(handles.figure1,'Name') '...'],...
'Yes','No','Yes');
if strcmp(selection,'No')
return;
end
delete(handles.figure1)
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in popupmenu2.
function popupmenu2_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu2
% --- Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over popupmenu2.
function popupmenu2_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on selection change in popupmenu1.
function popupmenu3_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
% --- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in popupmenu4.
function popupmenu4_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu4 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu4
% --- Executes during object creation, after setting all properties.
function popupmenu4_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in popupmenu5.
function popupmenu5_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu5 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu5
% --- Executes during object creation, after setting all properties.
function popupmenu5_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in popupmenu2.
function popupmenu6_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu2
% --- Executes during object creation, after setting all properties.
function popupmenu6_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in popupmenu2.
function popupmenu7_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu2
% --- Executes during object creation, after setting all properties.
function popupmenu7_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function ntermos_Callback(hObject, eventdata, handles)
% hObject handle to ntermos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ntermos as text
% str2double(get(hObject,'String')) returns contents of ntermos as a double
% --- Executes during object creation, after setting all properties.
function ntermos_CreateFcn(hObject, eventdata, handles)
% hObject handle to ntermos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --------------------------------------------------------------------
function AboutMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to AboutMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
open('About.fig');
% --------------------------------------------------------------------
function ContactMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to ContactMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
open('Contact.fig');
% --------------------------------------------------------------------
function SobreMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to SobreMenuItem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)