Code covered by the BSD License  

Highlights from
Fourier series with taper

image thumbnail

Fourier series with taper

by

 

Compute Fourier series with Tukey tapers and standard Fourier series for a number of signals

ProjetoMM1C(varargin)
function varargout = ProjetoMM1C(varargin)
% PROJETOMM1C M-file for ProjetoMM1C.fig
%      PROJETOMM1C, by itself, creates a new PROJETOMM1C or raises the existing
%      singleton*.
%
%      H = PROJETOMM1C returns the handle to a new PROJETOMM1C or the handle to
%      the existing singleton*.
%
%      PROJETOMM1C('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in PROJETOMM1C.M with the given input arguments.
%
%      PROJETOMM1C('Property','Value',...) creates a new PROJETOMM1C or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before ProjetoMM1C_OpeningFunction gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to ProjetoMM1C_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help ProjetoMM1C
% http://www2.ee.ufpe.br/codec/tapers.html
%authors: R. Santos de Souza, H.M. de Oliveira, UFPE

% Last Modified by GUIDE v2.5 09-Apr-2013 09:22:32

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @ProjetoMM1C_OpeningFcn, ...
                   'gui_OutputFcn',  @ProjetoMM1C_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before ProjetoMM1C is made visible.
function ProjetoMM1C_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to ProjetoMM1C (see VARARGIN)

% Choose default command line output for ProjetoMM1C
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% This sets up the initial plot - only do when we are invisible
% so window can get raised using ProjetoMM1C.

x = -2*pi:.01:2*pi;
y = 0;
j = 1;
for i = -2*pi:.01:2*pi
    r(j)=0;
    j = j + 1;
end;

if strcmp(get(hObject,'Visible'),'off')
    axes(handles.axes1);
    plot(x,y);
    axis([-6.5 6.5 -1.2 1.2]);
    set(gca,'XTick',-2*pi:pi/2:2*pi);
    set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
    axes(handles.axes2);
    plot(x,r);
    axis([-6.5 6.5 -1.2 1.2]);
    set(gca,'XTick',-2*pi:pi/2:2*pi);
    set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
    axes(handles.axes3);
    plot(x,r);
    axis([-6.5 6.5 -1.2 1.2]);
    set(gca,'XTick',-2*pi:pi/2:2*pi);
    set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});

end

% UIWAIT makes ProjetoMM1C wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = ProjetoMM1C_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

N = str2double(get(handles.ntermos,'String'));
selected_function = get(handles.popupmenu1, 'Value');
selected_tapper = get(handles.popupmenu2, 'Value');
flag = 0;

switch selected_function
    
    case 1                      %Onda quadrada
        r = -2*pi:.001:2*pi;
        s = (square(r) + 1)/2;        
        
        axes(handles.axes1);    %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        
        axes(handles.axes2);    %Plotagem da representacao por Serie de Fourier em Axes2
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=1:N
                sum = sum + (-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
            end
            f(i)=(1/2) + sum;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
                    end
                    ft(i)=(1/2) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
                    end
                    ft(i)=(1/2) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
                    end
                    ft(i)=(1/2) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
                    end
                    ft(i)=(1/2) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(-1/(n*pi))*sin(n*t)*(cos(n*pi)-1);
                    end
                    ft(i)=(1/2) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                                        
        end;
                
                           
    case 2                      %Porta
        r = -2*pi:.001:2*pi;
        s = rectpuls(r,pi);
        
        axes(handles.axes1);    %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                
        axes(handles.axes2);    %Plotagem da representacao por Serie de Fourier em Axes2
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=1:N
                sum = sum + (2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
            end
        f(i)=(1/4) + sum;
        i=i+1;
        sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
                    end
                    ft(i)=(1/4) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
                    end
                    ft(i)=(1/4) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
                    end
                    ft(i)=(1/4) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
                    end
                    ft(i)=(1/4) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(n*pi))*sin(n*pi/4)*cos(n*t/2);
                    end
                    ft(i)=(1/4) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                                        
        end;
                
    case 3                      %Rampa
        r = -4*pi:.001:4*pi;
        s = sawtooth(r,0);        
        axes(handles.axes1);    %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-13 13 -1.2 1.2]);
        set(gca,'XTick',-4*pi:pi:4*pi);
        set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
        
        axes(handles.axes2);    %Plotagem da representacao por Serie de Fourier em Axes2
        i=1;
        sum=0;

        for t=-4*pi:0.001:4*pi
            for n=1:N
                sum = sum + (1/(n*pi))*sin(n*t);
            end
            f(i)= 2 * sum;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-13 13 -1.2 1.2]);
        set(gca,'XTick',-4*pi:pi:4*pi);
        set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-4*pi:0.001:4*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(1/(n*pi))*sin(n*t);
                    end
                    ft(i)= 2*sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-13 13 -1.2 1.2]);
                set(gca,'XTick',-4*pi:pi:4*pi);
                set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-4*pi:0.001:4*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(1/(n*pi))*sin(n*t);
                    end
                    ft(i)= 2*sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-13 13 -1.2 1.2]);
                set(gca,'XTick',-4*pi:pi:4*pi);
                set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-4*pi:0.001:4*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(1/(n*pi))*sin(n*t);
                    end
                    ft(i)= 2*sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-13 13 -1.2 1.2]);
                set(gca,'XTick',-4*pi:pi:4*pi);
                set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-4*pi:0.001:4*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(1/(n*pi))*sin(n*t);
                    end
                    ft(i)= 2*sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-13 13 -1.2 1.2]);
                set(gca,'XTick',-4*pi:pi:4*pi);
                set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-4*pi:0.001:4*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(1/(n*pi))*sin(n*t);
                    end
                    ft(i)= 2*sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-13 13 -1.2 1.2]);
                set(gca,'XTick',-4*pi:pi:4*pi);
                set(gca,'XTickLabel',{'-4pi','-3pi','-2pi','-pi','0','pi','2pi','3pi', '4pi'});
                zoom on;
                                        
        end;
        
    case 4                      %Senoide retificada em meia-onda
        r = -2*pi:.001:2*pi;
        j=1;
        for i=-2*pi:.001:2*pi
            if sin(2*i)>0
                s(j) = sin(2*i);
            else
                s(j)=0;
            end;
            j=j+1;
        end;
        
        axes(handles.axes1);    %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        
        axes(handles.axes2);    %Plotagem da representacao por Serie de Fourier em Axes2
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=2:2:N
                sum = sum + (2/(pi*(1-n*n)))*cos(2*n*t);
            end
            f(i)= 1/pi + sum + (1/2)*sin(2*t) ;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=2:2:N
                        sumt = sumt + (1 - n/(N+1))*(2/(pi*(1-n*n)))*cos(2*n*t);
                    end
                    ft(i)=(1/pi) + sumt + (1 - 1/(N+1))*(1/2)*sin(2*t);
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=2:2:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
                    end
                    ft(i)=(1/pi) + sumt + [(1/2)*(1 + cos(pi/N))]*(1/2)*sin(2*t);
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=2:2:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(pi*(1-n*n)))*cos(2*n*t);
                    end
                    ft(i)=(1/pi) + sumt + [sin((pi)/(N+1/2))/((pi)/(N+1/2))]*(1/2)*sin(2*t);
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=2:2:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
                    end
                    ft(i)=(1/pi) + sumt + [1 - (1/(N*N))]*(1/2)*sin(2*t);
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=2:2:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(pi*(1-n*n)))*cos(2*n*t);
                    end
                    ft(i)=(1/pi) + sumt + [exp((-1)/(2*N*N))]*(1/2)*sin(2*t);
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
        
        end;
            
    case 5                      %Senoide retificada em onda-completa
        r = -2*pi:.001:2*pi;
        s = abs(sin(r));        
        
        axes(handles.axes1);    %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        
        axes(handles.axes2);    %Plotagem da representacao por Serie de Fourier em Axes2
        
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=1:N
                sum = sum + (4/(pi*(1-4*n*n)))*cos(2*n*t);
            end
            f(i)= 2/pi + sum ;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(4/(pi*(1-4*n*n)))*cos(2*n*t);
                    end
                    ft(i)=(2/pi) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
                    end
                    ft(i)=(2/pi) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
                    end
                    ft(i)=(2/pi) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
                    end
                    ft(i)=(2/pi) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(4/(pi*(1-4*n*n)))*cos(2*n*t);
                    end
                    ft(i)=(2/pi) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                                        
        end;
                
    case 6                      %Trem de pulsos retangulares
        r = -2*pi:.001:2*pi;
        d = -2*pi:pi:2*pi;
        s = pulstran(r,d,'rectpuls',0.5);
        
        axes(handles.axes1);     %Plotagem do grafico selecionado em Axes1
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        
        axes(handles.axes2);     %Plotagem da representacao por Serie de Fourier em Axes2
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=1:N
                sum = sum + (2/(pi*n))*sin(n/2)*cos(2*n*t);
            end
            f(i)= 1/(2*pi) + sum ;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(2/(pi*n))*sin(n/2)*cos(2*n*t);
                    end
                    ft(i)=(1/(2*pi)) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
                    end
                    ft(i)=(1/(2*pi)) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
                    end
                    ft(i)=(1/(2*pi)) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
                    end
                    ft(i)=(1/(2*pi)) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(2/(pi*n))*sin(n/2)*cos(2*n*t);
                    end
                    ft(i)=(1/(2*pi)) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                                        
        end;
        
    case 7                      %Triangulo
        r = -2*pi:.001:2*pi;
        s = tripuls(r,pi);        
        
        axes(handles.axes1);
        plot(r,s);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        
        axes(handles.axes2);
        
        i=1;
        sum=0;

        for t=-2*pi:0.001:2*pi
            for n=1:N
                sum = sum + (8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
            end
            f(i)= 1/8 + sum ;
            i=i+1;
            sum = 0;
        end;

        f=f';

        plot(r,f);
        axis([-6.5 6.5 -1.2 1.2]);
        set(gca,'XTick',-2*pi:pi/2:2*pi);
        set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
        zoom on;
        
        switch selected_tapper
            
            case 1          %Fejer
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Fejer em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + (1 - n/(N+1))*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
                    end
                    ft(i)=(1/8) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 2          %Hamming
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Hamming em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [(1/2)*(1 + cos(n*pi/N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
                    end
                    ft(i)=(1/8) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
            
            case 3          %Lanczos
              
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Lanczos em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [sin((n*pi)/(N+1/2))/((n*pi)/(N+1/2))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
                    end
                    ft(i)=(1/8) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 4          %Parzen
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Parzen em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [1 - ((n*n)/(N*N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
                    end
                    ft(i)=(1/8) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                
            case 5          %Weierstrass
                
                axes(handles.axes3);    %Plotagem da representacao por Serie de Fourier com Tapper de Weierstrass em Axes3
                i=1;
                sumt=0;

                for t=-2*pi:0.001:2*pi
                    for n=1:N
                        sumt = sumt + [exp((-n*n)/(2*N*N))]*(8/(n*n*pi*pi))*(1-cos((n*pi)/4))*cos((n*t)/2);
                    end
                    ft(i)=(1/8) + sumt;
                    i=i+1;
                    sumt = 0;
                end;

                ft = ft';

                plot(r,ft);
                axis([-6.5 6.5 -1.2 1.2]);
                set(gca,'XTick',-2*pi:pi/2:2*pi);
                set(gca,'XTickLabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2', '2pi'});
                zoom on;
                                        
        end;
    
end;

% --------------------------------------------------------------------
function FileMenu_Callback(hObject, eventdata, handles)
% hObject    handle to FileMenu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --------------------------------------------------------------------
function OpenMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to OpenMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
file = uigetfile('*.fig');
if ~isequal(file, 0)
    open(file);
end

% --------------------------------------------------------------------
function PrintMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to PrintMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
printdlg(handles.axes2)

% --------------------------------------------------------------------
function CloseMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to CloseMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...
                     ['Close ' get(handles.figure1,'Name') '...'],...
                     'Yes','No','Yes');
if strcmp(selection,'No')
    return;
end

delete(handles.figure1)


% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu1


% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in popupmenu2.
function popupmenu2_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu2


% --- Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over popupmenu2.
function popupmenu2_ButtonDownFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% --- Executes on selection change in popupmenu1.
function popupmenu3_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu1


% --- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- Executes on selection change in popupmenu4.
function popupmenu4_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu4 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu4


% --- Executes during object creation, after setting all properties.
function popupmenu4_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- Executes on selection change in popupmenu5.
function popupmenu5_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu5 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu5


% --- Executes during object creation, after setting all properties.
function popupmenu5_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- Executes on selection change in popupmenu2.
function popupmenu6_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu2


% --- Executes during object creation, after setting all properties.
function popupmenu6_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- Executes on selection change in popupmenu2.
function popupmenu7_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu2


% --- Executes during object creation, after setting all properties.
function popupmenu7_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function ntermos_Callback(hObject, eventdata, handles)
% hObject    handle to ntermos (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ntermos as text
%        str2double(get(hObject,'String')) returns contents of ntermos as a double


% --- Executes during object creation, after setting all properties.
function ntermos_CreateFcn(hObject, eventdata, handles)
% hObject    handle to ntermos (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --------------------------------------------------------------------

function AboutMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to AboutMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
open('About.fig');

% --------------------------------------------------------------------
function ContactMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to ContactMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
open('Contact.fig');

% --------------------------------------------------------------------
function SobreMenuItem_Callback(hObject, eventdata, handles)
% hObject    handle to SobreMenuItem (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


Contact us