from
A MATLAB Implementation of the Jacchia Atmosphere Model
by David Eagle
MATLAB function and demonstration script which implement the Jacchia 1970 atmosphere model.
|
| gast1 (jdate)
|
function gst = gast1 (jdate)
% Greenwich apparent sidereal time
% major nutation terms only
% input
% jdate = Julian date
% output
% gst = Greenwich apparent sidereal time (radians)
% (0 <= gst <= 2 pi)
% Orbital Mechanics with MATLAB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pi2 = 2.0 * pi;
% conversion factors
dtr = pi/180;
atr = dtr/3600;
% time arguments
t = (jdate - 2451545) / 36525;
t2 = t * t;
t3 = t * t2;
% fundamental trig arguments
l = mod(dtr * (280.4665 + 36000.7698 * t), pi2);
lp = mod(dtr * (218.3165 + 481267.8813 * t), pi2);
lraan = mod(dtr * (125.04452 - 1934.136261 * t), pi2);
% nutations in longitude and obliquity
dpsi = atr * (-17.2 * sin(lraan) - 1.32 * sin(2 * l) ...
- 0.23 * sin(2 * lp) + 0.21 * sin(2 * lraan));
deps = atr * (9.2 * cos(lraan) + 0.57 * cos(2 * l) ...
+ 0.1 * cos(2 * lp) - 0.09 * cos(2 * lraan));
% mean and apparent obliquity of the ecliptic
eps0 = mod(dtr * (23 + 26 / 60 + 21.448 / 3600) ...
+ atr * (-46.815 * t - 0.00059 * t2 + 0.001813 * t3), pi2);
obliq = eps0 + deps;
% greenwich mean and apparent sidereal time
gstm = mod(dtr * (280.46061837 + 360.98564736629 * (jdate - 2451545) ...
+ 0.000387933 * t2 - t3 / 38710000), pi2);
gst = mod(gstm + dpsi * cos(obliq), pi2);
|
|
Contact us