Code covered by the BSD License
-
atan3 (a, b)
four quadrant inverse tangent
-
ceqm1 (t, y)
first order form of Cowell's equations of orbital motion
-
eci2orb1 (mu, r, v)
convert eci state vector to six classical orbital
-
eci2orb2 (mu, gst0, omega, ut...
convert eci state vector to complete set of classical orbital elements
-
gast1 (jdate)
Greenwich apparent sidereal time
-
gdate (jdate)
convert Julian date to Gregorian (calendar) date
-
geodet1 (rmag, dec)
geodetic latitude and altitude
-
getdate
interactive request and input of calendar date
-
getoe(ioev)
interactive request of classical orbital elements
-
gettime
interactive request and input of universal time
-
gravity (t, y)
first order equations of orbital motion
-
jd2str(jdate)
convert Julian date to string equivalent
-
julian (month, day, year)
Julian date
-
moon (jdate)
lunar ephemeris
-
oeprint1(mu, oev)
print six classical orbital elements
-
om_constants
astrodynamic and utility constants
-
orb2eci(mu, oev)
convert classical orbital elements to eci state vector
-
r2r (x)
revolutions to radians function
-
readgm(fname)
read gravity model data file
-
readoe1(filename)
read orbital elements data file
-
rkf78 (deq, neq, ti, tf, h, t...
solve first order system of differential equations
-
sun1 (jdate)
solar ephemeris
-
svprint(r, v)
print position and velocity vectors and magnitudes
-
gto.m
-
View all files
The Long-term Evolution of Geosynchronous Transfer Orbits
by David Eagle
22 May 2013
Interactive MATLAB script that predicts the long-term evolution of geosynchronous transfer orbits.
|
Watch this File
|
| File Information |
| Description |
This MATLAB script implements a special perturbation solution of orbital motion using a variable step size Runge-Kutta-Fehlberg (RKF78) integration method to numerically solve Cowell’s form of the system of differential equation subject to the central body gravity and other external forces. This is also called the orbital initial value problem (IVP).
The user can choose to model one or more of the following perturbations:
• non-spherical Earth gravity
• point mass solar gravity
• point mass lunar gravity
After the orbit propagation is complete, this script can plot the following classical orbital elements:
• semimajor axis
• eccentricity
• orbital inclination
• argument of perigee
• right ascension of the ascending node
• true anomaly
• geodetic perigee altitude
• geodetic apogee altitude
|
| MATLAB release |
MATLAB 7.12 (R2011a)
|
|
Tags for This File
|
| Everyone's Tags |
|
| Tags I've Applied |
|
| Add New Tags |
Please login to tag files.
|
|
Contact us