%% ----------------------------------------------------------------------------
% PSOGSA source codes version 1.0.
% Author: Seyedali Mirjalili (ali.mirjalili@gmail.com)
% Main paper:
% S. Mirjalili, S. Z. Mohd Hashim, and H. Moradian Sardroudi, "Training
%feedforward neural networks using hybrid particle swarm optimization and
%gravitational search algorithm," Applied Mathematics and Computation,
%vol. 218, pp. 11125-11137, 2012.
%The paper of the PSOGSA algorithm utilized as the trainer:
%S. Mirjalili and S. Z. Mohd Hashim, "A New Hybrid PSOGSA Algorithm for
%Function Optimization," in International Conference on Computer and Information
%Application?ICCIA 2010), 2010, pp. 374-377.
%% -----------------------------------------------------------------------------
clc
clear all
close all
%% ////////////////////////////////////////////////////Data set preparation/////////////////////////////////////////////
load iris.txt
x=sortrows(iris,2);
H2=x(1:150,1);
H3=x(1:150,2);
H4=x(1:150,3);
H5=x(1:150,4);
T=x(1:150,5);
H2=H2';
[xf,PS] = mapminmax(H2);
I2(:,1)=xf;
H3=H3';
[xf,PS2] = mapminmax(H3);
I2(:,2)=xf;
H4=H4';
[xf,PS3] = mapminmax(H4);
I2(:,3)=xf;
H5=H5';
[xf,PS4] = mapminmax(H5);
I2(:,4)=xf;
Thelp=T;
T=T';
[yf,PS5]= mapminmax(T);
T=yf;
T=T';
%% /////////////////////////////////////////////FNN initial parameters//////////////////////////////////////
HiddenNodes=15; %Number of hidden codes
Dim=8*HiddenNodes+3; %Dimension of masses in GSA
TrainingNO=150; %Number of training samples
%% ////////////////////////////////////////////////////////GSA/////////////////////////////////////////////
%Configurations and initializations
noP = 30; %Number of masses
Max_iteration = 500; %Maximum number of iteration
CurrentFitness =zeros(noP,1);
G0=1; %Gravitational constant
CurrentPosition = rand(noP,Dim); %Postition vector
velocity = .3*randn(noP,Dim) ; %Velocity vector
acceleration=zeros(noP,Dim); %Acceleration vector
mass(noP)=0; %Mass vector
force=zeros(noP,Dim);%Force vector
%Vectores for saving the location and MSE of the best mass
BestMSE=inf;
BestMass=zeros(1,Dim);
ConvergenceCurve=zeros(1,Max_iteration); %Convergence vector
%Main loop
Iteration = 0 ;
while ( Iteration < Max_iteration )
Iteration = Iteration + 1;
G=G0*exp(-20*Iteration/Max_iteration);
force=zeros(noP,Dim);
mass(noP)=0;
acceleration=zeros(noP,Dim);
%Calculate MSEs
for i = 1:noP
for ww=1:(7*HiddenNodes)
Weights(ww)=CurrentPosition(i,ww);
end
for bb=7*HiddenNodes+1:Dim
Biases(bb-(7*HiddenNodes))=CurrentPosition(i,bb);
end
fitness=0;
for pp=1:TrainingNO
actualvalue=My_FNN(4,HiddenNodes,3,Weights,Biases,I2(pp,1),I2(pp,2), I2(pp,3),I2(pp,4));
if(T(pp)==-1)
fitness=fitness+(1-actualvalue(1))^2;
fitness=fitness+(0-actualvalue(2))^2;
fitness=fitness+(0-actualvalue(3))^2;
end
if(T(pp)==0)
fitness=fitness+(0-actualvalue(1))^2;
fitness=fitness+(1-actualvalue(2))^2;
fitness=fitness+(0-actualvalue(3))^2;
end
if(T(pp)==1)
fitness=fitness+(0-actualvalue(1))^2;
fitness=fitness+(0-actualvalue(2))^2;
fitness=fitness+(1-actualvalue(3))^2;
end
end
fitness=fitness/TrainingNO;
CurrentFitness(i) = fitness;
end
best=min(CurrentFitness);
worst=max(CurrentFitness);
if(BestMSE>best)
BestMSE=best;
BestMass=CurrentPosition(i,:);
end
for i=1:noP
mass(i)=(CurrentFitness(i)-0.99*worst)/(best-worst);
end
for i=1:noP
mass(i)=mass(i)*5/sum(mass);
end
%Calculate froces
for i=1:noP
for j=1:Dim
for k=1:noP
if(CurrentPosition(k,j)~=CurrentPosition(i,j))
force(i,j)=force(i,j)+ rand()*G*mass(k)*mass(i)*(CurrentPosition(k,j)-CurrentPosition(i,j))/abs(CurrentPosition(k,j)-CurrentPosition(i,j));
end
end
end
end
%Calculate a
for i=1:noP
for j=1:Dim
if(mass(i)~=0)
acceleration(i,j)=force(i,j)/mass(i);
end
end
end
%Calculate V
for i=1:noP
for j=1:Dim
velocity(i,j)=rand()*velocity(i,j)+acceleration(i,j);
end
end
%Calculate X
CurrentPosition = CurrentPosition + velocity ;
ConvergenceCurve(1,Iteration)=BestMSE;
disp(['GSA is training FNN (Iteration = ', num2str(Iteration),' ,MSE = ', num2str(BestMSE),')'])
end
%% ///////////////////////Calculate the classification//////////////////////
Rrate=0;
Weights=BestMass(1:7*HiddenNodes);
Biases=BestMass(7*HiddenNodes+1:Dim);
for pp=1:TrainingNO
actualvalue=My_FNN(4,HiddenNodes,3,Weights,Biases,I2(pp,1),I2(pp,2), I2(pp,3),I2(pp,4));
if(T(pp)==-1)
if (round(actualvalue(1))==1 && round(actualvalue(2))==0 && round(actualvalue(3))==0)
Rrate=Rrate+1;
end
end
if(T(pp)==0)
if (round(actualvalue(1))==0 && round(actualvalue(2))==1 && round(actualvalue(3))==0)
Rrate=Rrate+1;
end
end
if(T(pp)==1)
if (round(actualvalue(1))==0 && round(actualvalue(2))==0 && round(actualvalue(3))==1)
Rrate=Rrate+1;
end
end
end
ClassificationRate=(Rrate/TrainingNO)*100;
disp(['Classification rate = ', num2str(ClassificationRate)]);
%% Draw the convergence curve
hold on;
semilogy(ConvergenceCurve);
title(['Classification rate : ', num2str(ClassificationRate), '%']);
xlabel('Iteration');
ylabel('MSE');
box on
grid on
axis tight
hold off;