# Structure and Motion Toolkit in MATLAB

### Philip Torr (view profile)

04 Mar 2004 (Updated )

Structure and Motion Toolkit in MATLAB.

torr_main_book_ave.m
```%	By Philip Torr 2002
%main()
%profile on
m3 = 256;
sse2t = 0;
%method = 5;
%

if new_random == 0
state_rand = 400;
randn('state',state_rand)
rand('state',state_rand)
end

trans = 0;
true_epipole = torr_get_right_epipole(true_F,m3);

for(i = 1:1)

torr_genf;

nX1 = [nx1,ny1, ones(length(x1),1) * m3];
nX2 = [nx2,ny2, ones(length(x2),1) * m3];

%mine
%f_torr = estf(nx1,ny1,nx2,ny2, no_matches,m3);

%the F matrix is defined like:
% (nx2, ny2, m3) f(1 2 3) nx1
%                 (4 5 6) ny1
%                 (7 8 9) m3

%first try linear method
method = 3

[nF , nf]= fm_linear(nX1, nX2, eye(3), method);
%calc noisy epipole
noisy_epipole = torr_get_right_epipole(nF,m3)
epipole_distance =  sqrt(norm(true_epipole -noisy_epipole))

ne1 = torr_errf2(nf,x1,y1,x2,y2, no_matches, m3);

sne1 = sort(ne1);
%    sse_n = norm(sne1(20:no_matches-20))
sse_n = norm(sne1)
%    nf'

%
method = 5

[nF2 , nf2]= fm_linear(nX1, nX2, eye(3), method);
%calc noisy epipole
noisy_epipole2 = torr_get_right_epipole(nF2,m3)
epipole_distance2 =  sqrt(norm(true_epipole -noisy_epipole2))

ne2 = torr_errf2(nf2,x1,y1,x2,y2, no_matches, m3);

sne2 = sort(ne2);
%    sse_n2 = norm(sne2(20:no_matches-20))
sse_n2 = norm(sne2)
%    nRf'

end

if draw_epipole
torr_display_epipoles(nF,nF2,perfect_matches, x1,y1, u1, v1)
end
%profile off
%
%
% some crap
%
% >> XX2 = [x2(1), y2(1), m3]
%
% XX2 =
%
%   101.4245 -119.2097  256.0000
%
% >> XX1 = [x1(1), y1(1), m3]
%
% XX1 =
%
%    49.3714 -140.5000  256.0000
%
% >>
%
%
%
%

%        e = fm_error_hs(F, n1, n2, nowarn);

if sse_n2 < sse_n
disp('Bookstein + Sampson betta')
else
disp('old betta')
end```