# Structure and Motion Toolkit in MATLAB

### Philip Torr (view profile)

04 Mar 2004 (Updated )

Structure and Motion Toolkit in MATLAB.

torr_main_rotation_ave2.m
```%	By Philip Torr 2002
%main()
%profile on
m3 = 170;
sse2t = 0;
%method = 5;
%

state_rand = 400;
randn('state',state_rand)
rand('state',state_rand)

trans = 0;
true_epipole = torr_get_right_epipole(true_F,m3);
method

for(i = 1:1)

torr_genf;

nX1 = [nx1,ny1, ones(length(x1),1) * m3];
nX2 = [nx2,ny2, ones(length(x2),1) * m3];

%mine
%f_torr = estf(nx1,ny1,nx2,ny2, no_matches,m3);

%the F matrix is defined like:
% (nx2, ny2, m3) f(1 2 3) nx1
%                 (4 5 6) ny1
%                 (7 8 9) m3

if method == 7
nf = estf(nx1,ny1,nx2,ny2, no_matches,m3);
nF = reshape(nf,3,3)';
else
[nF , nf]= fm_linear(nX1, nX2, eye(3), method);
end
%calc noisy epipole
noisy_epipole = torr_get_right_epipole(nF,m3);
epipole_distance =  sqrt(norm(true_epipole -noisy_epipole))

ne1 = torr_errf2(nf,x1,y1,x2,y2, no_matches, m3);

sne1 = sort(ne1);
sse_n = norm(sne1(20:no_matches-20))
%    nf'

theta2 = 2 * pi * rand;
rot2 = [ cos(theta2), sin(theta2); -sin(theta2), cos(theta2)];

theta3 = 2 * pi * rand;
rot3 = [ cos(theta3), sin(theta3); -sin(theta3), cos(theta3)];

nRxy1 = [nx1 ny1] * rot2 + trans;
Rxy1 = [x1 y1] * rot2 + trans;

nRxy2 = [nx2 ny2] * rot3 - trans;
Rxy2 = [x2 y2] * rot3 - trans;

nRX1 = [nRxy1(:,1),nRxy1(:,2), ones(length(x1),1) * m3];
nRX2 = [nRxy2(:,1),nRxy2(:,2), ones(length(x2),1) * m3];

%
if method == 7
nRf = estf(nRxy1(:,1),nRxy1(:,2), nRxy2(:,1),nRxy2(:,2), no_matches,m3);
nRF = reshape(nf,3,3)';
else
[nRF , nRf]= fm_linear(nRX1, nRX2, eye(3), method);
end

Rne1 = torr_errf2(nRf,Rxy1(:,1),Rxy1(:,2), Rxy2(:,1),Rxy2(:,2), no_matches, m3);

sRne1 = sort(Rne1);
%    nRf'

G1 = [rot2' [trans trans]'/m3; 0 0 1];
G2 = [rot3' [-trans -trans]'/m3; 0 0 1];

nF2 =G2' * nRF * G1
nf2 = reshape(nF2',9,1);
nF
true_F
end

if draw_epipole
torr_display_epipoles(nF,nF2,perfect_matches, x1,y1, u1, v1)
end
%profile off
%
%
% some crap
%
% >> XX2 = [x2(1), y2(1), m3]
%
% XX2 =
%
%   101.4245 -119.2097  256.0000
%
% >> XX1 = [x1(1), y1(1), m3]
%
% XX1 =
%
%    49.3714 -140.5000  256.0000
%
% >>
%
%
%
%

%        e = fm_error_hs(F, n1, n2, nowarn);```