Get from Ico-github-logo

Download apps, toolboxes, and other File Exchange content using Add-On Explorer in MATLAB.

» Watch video

Highlights from
Quantile-quantile plot

  • functionTemplate(input_args)
    FUNCTIONTEMPLATE Summary of this function goes on this H1 line
  • iosr.acoustics.irStats(fi...
    IRSTATS Calculate RT, DRR, Cte, and EDT for impulse response file
  • iosr.acoustics.rtEst(abs_...
    RTEST Estimate reverberation time based on room size and absorption
  • iosr.auditory.azimuth2itd...
    AZIMUTH2ITD Convert azimuth in degrees to ITD
  • iosr.auditory.binSearch(S...
    Conduct a binary search
  • iosr.auditory.calcIld(L,R...
    CALCILD Calculate normalised interaural level difference
  • iosr.auditory.chXcorr(hc_...
    CHXCORR Calculate cross-correlograms with a wide range of options.
  • iosr.auditory.chXcorr2(hc...
    CHXCORR2 Calculate cross-correlograms with a range of options.
  • iosr.auditory.createWindo...
    Create a Hann or exp. window with specified onsets/offsets
  • iosr.auditory.dupWeight(f)
    DUP_WEIGHT Calculate duplex weighting coefficients for ITD and ILD
  • iosr.auditory.erbRate2hz(x)
    ERBRATE2HZ Convert ERB rate to Hz.
  • iosr.auditory.freqMulti(f)
    FREQMULTI Calculate frequency coefficient for ITD-azimuth warping
  • iosr.auditory.gammatoneFa...
    GAMMATONEFAST Produce an array of responses from gammatone filters via FFT
  • iosr.auditory.hz2erbRate(x)
    HZ2ERBRATE Convert Hz to ERB rate
  • iosr.auditory.instItd(l,r...
    INSTITD Calculate instantaneous ITD
  • iosr.auditory.iso226(phon...
    ISO226 ISO 226:2003 Normal equal-loudness-level contours
  • iosr.auditory.itd2azimuth...
    ITD2AZIMUTH Convert ITD to azimuth
  • iosr.auditory.lindemannIn...
    LINDEMANNINH Signal pre-processing for Lindemann's cross-correlation
  • iosr.auditory.loudWeight(...
    LOUDWEIGHT Calculate loudness weighting coefficients based on ISO 226
  • iosr.auditory.makeErbCFs(...
    MAKEERBCFS Make a series of center frequencies equally spaced in ERB-rate.
  • iosr.auditory.meddisHairC...
    Calculate Ray Meddis' hair cell model for a number of channels.
  • iosr.auditory.perceptualC...
    PERCEPTUALCENTROID Perceptual spectral centroid
  • iosr.auditory.xcorrLindem...
    XCORRLINDEMANN Cross-correlation based on Lindemann's precedence model
  • iosr.bss.applyIdealMasks(...
    APPLYIDEALMASKS Calculate and apply ideal masks via STFT
  • iosr.bss.applyMask(s,m,nf...
    APPLYMASK Apply a time-frequency mask to an STFT
  • iosr.bss.calcImr(m,im)
    CALCIMR Calculates the Ideal Mask Ratio (IMR)
  • iosr.bss.calcSnr(output,t...
    CALCSNR Calculate the separation SNR
  • iosr.bss.cfs2fcs(cfs,fs)
    CFS2FCS Calculate gammatone crossover frequencies.
  • iosr.bss.generateMixtures...
    GENERATEMIXTURES Generate arrays of mixtures from targets and interferers.
  • iosr.bss.getFullMask(m,fr...
    GETFULLMASK Convert frame rate mask to a sample-by-sample mask
  • iosr.bss.idealMasks(st,si...
    IDEALMASKS Calculate ideal time-frequency masks from STFTs
  • iosr.bss.resynthesise(x,f...
    RESYNTHESISE Resynthesise a target from a time-frequency mask
  • iosr.dsp.autocorr(x,Q,dim)
    AUTOCORR Perform autocorrelation via FFT
  • iosr.dsp.convFft(a,b,shape)
    CONVFFT Convolve two vectors using FFT multiplication
  • iosr.dsp.istft(s,nfft,hop...
    ISTFT Calculate the Inverse Short-Time Fourier Transform
  • iosr.dsp.lapwin(L,b)
    LAPWIN Laplace window.
  • iosr.dsp.localpeaks(x,mode)
    LOCALPEAKS Find local peaks and troughs in a vector
  • iosr.dsp.ltas(x,fs,varargin)
    LTAS calculate the long-term average spectrum of a signal
  • iosr.dsp.matchEQ(x,fs,mag...
    MATCHEQ Match the LTAS of a signal to an arbitrary spectral magnitude
  • iosr.dsp.rms(x,dim)
    RMS Calculate the rms of a vector or matrix
  • iosr.dsp.sincFilter(x,Wn,...
    SINCFILTER Apply a near-ideal low-pass or band-pass brickwall filter
  • iosr.dsp.smoothSpectrum(X...
    SMOOTHSPECTRUM Apply 1/N-octave smoothing to a frequency spectrum
  • iosr.dsp.stft(x,nfft,hop,fs)
    STFT Calculate the short-time Fourier transform of a signal
  • iosr.dsp.vsmooth(x,frame,...
    VSMOOTH Smooth a vector using mathematical functions
  • iosr.figures.chMap(M)
    CHMAP Create a monochrome-compatible colour map
  • iosr.figures.cmrMap(M)
    CMRMAP Create a monochrome-compatible colour map
  • iosr.figures.multiwaveplo...
    MULTIWAVEPLOT Stacked line plots from a matrix or vectors
  • iosr.figures.subfigrid(nr...
    SUBFIGRID Create axis positions for subfigures
  • iosr.general.cell2csv(C,f...
    CELL2CSV Output a cell array to a CSV file
  • iosr.general.checkMexComp...
    CHECKMEXCOMPILED Check if mex file is compiled for system
  • iosr.general.getContents(...
    GETCONTENTS Get the contents of a specified directory
  • iosr.general.updateConten...
    UPDATECONTENTS Create a Contents.m file including subdirectories
  • iosr.general.urn(varargin)
    URN Generate random number sequence without duplicates
  • iosr.install
    INSTALL Set search paths, and download and install dependencies.
  • iosr.statistics.getRmse(X...
    GETRMSE Calculate the root-mean-square error between input data
  • iosr.statistics.laprnd(va...
    LAPRND Pseudorandom numbers drawn from the Laplace distribution
  • iosr.statistics.qqPlot(va...
    QQPLOT Quantile-quantile plot with patch option
  • iosr.statistics.quantile(...
    QUANTILE Quantiles of a sample via various methods.
  • iosr.statistics.tab2box(X...
    TAB2BOX Prepare tabular data for boxPlot function
  • iosr.statistics.trirnd(va...
    TRIRND Pseudorandom numbers drawn from the triangular distribution
  • iosr.svn.buildSvnProfile(...
    BUILDSVNPROFILE Read data from files tagged with SVN keywords
  • iosr.svn.headRev(folders,...
    HEADREV Retrieve the head revision for specified files
  • iosr.svn.readSvnKeyword(f...
    READSVNKEYWORD Read data from a file tagged with an SVN keyword
  • classTemplate
    CLASSTEMPLATE Summary of this class goes on this H1 line
  • iosr.bss.mixture
    MIXTURE Class of binaural sound source separation mixture.
  • iosr.bss.source
    SOURCE Class of sound source separation source.
  • iosr.dsp.audio
    AUDIO Abstract superclass providing audio-related properties and methods.
  • iosr.statistics.boxPlot
    BOXPLOT Draw a box plot
  • Contents.m
    +IOSR
  • example.m
    determine STFT parameters
  • View all files

Join the 15-year community celebration.

Play games and win prizes!

» Learn more

Be the first to rate this file! 12 Downloads (last 30 days) File Size: 611 KB File ID: #46779 Version: 1.1.1
image thumbnail

Quantile-quantile plot

by

 

28 May 2014 (Updated )

Quantile-quantile plot with patch option

| Watch this File

File Information
Description

NOTE: this function is now available from the IoSR Matlab Toolbox as iosr.statistics.qqPlot.
-------------------------
qq_plot(y) displays a quantile-quantile plot of the sample quantiles of y versus theoretical quantiles from a normal distribution. If the distribution of y is normal, the plot will be close to linear.
qq_plot(x,y) displays a quantile-quantile plot of two samples. If the samples come from the same distribution,the plot will be linear.
The inputs x and y should be numeric and have an equal number of elements; every element is treated as a member of the sample.

The plot displays the sample data with the plot symbol 'x'. Superimposed on the plot is a dashed straight line connecting the first and third quartiles.

qq_plot(...,mode) allows the appearance of the plot to be configured. With mode='line' (default), the plot appears as described above. With mode='patch', the data are plotted as a patch object, with the area bound by the x-distribution and the linear fit shaded grey. With mode='both' the two appearances are combined.

qq_plot(...,mode,method) and qq_plot(...,[],method) allows the method for calculating the quartiles, used for the fit line, to be specified. The default is 'R-8'. Type 'help quantile2' for more information. The latter form of the function call uses the default mode.

h = qq_plot(...) returns a two- or three-element vector of handles to the plotted object. The nature of the handles depends upon the mode. In all cases, the first handle is to the sample data, the second handle is to the fit line. With mode='patch' or mode='both', there is third handle to the patch object.

Example

% Display Q-Q plots for the rand and randn functions
figure
subplot(2,1,1)
qq_plot(rand(20),'patch')
subplot(2,1,2)
h = qq_plot(randn(20),'patch');
set(h(3),'FaceColor','r') % change fill colour

MATLAB release MATLAB 8.0 (R2012b)
Tags for This File   Please login to tag files.
Please login to add a comment or rating.
Updates
29 May 2014 1.1

Added 'method' input for consistency with other functions.

20 May 2015 1.1.1

Fixed error caused by new Matlab graphics objects.

18 Sep 2016 1.1.1

Migrated to GitHub.

Contact us