File Exchange

image thumbnail

M-band 2D dual-tree (Hilbert) wavelet multicomponent image denoising

version 1.0 (359 KB) by

Denoise multicomponent/color images with directional M-band dual-tree (Hilbert) wavelets



View License

The toolbox implements a parametric nonlinear estimator that generalizes several wavelet shrinkage denoising methods. Dedicated to additive Gaussian noise, it adopts a multivariate statistical approach to take into account both the spatial and the inter-component correlations existing between the different wavelet subbands, using a Stein Unbiased Risk Estimator (SURE) principle, which derives optimal parameters. The wavelet choice is a slightly redundant multi-band geometrical dual-wavelet frame. Experiments on multispectral remote sensing images outperform conventional wavelet denoising techniques (including curvelets).
The set of functions implements:
* several dual-tree M-band wavelet transforms from: Image analysis using a dual-tree M-band wavelet transform, IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006,
* a neighborhood choice from: Noise covariance properties in dual-tree wavelet decompositions, IEEE TRANSACTIONS ON INFORMATION THEORY, 2007,
* the non-linear Stein estimator: A nonlinear Stein-based estimator for multichannel image denoising, IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008,
* relative merits of different directional 2D wavelets are detailed in: A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity, SIGNAL PROCESSING, 2011,
The demonstration script is Init_Demo.m, and the functions for M-band dual-tree wavelets are provided in the directory TOOLBOX_DTMband_solo

Comments and Ratings (1)




Changed illustration


Added an image


Added links to references

MATLAB Release
MATLAB 7.9 (R2009b)

Download apps, toolboxes, and other File Exchange content using Add-On Explorer in MATLAB.

» Watch video