| [MatNbyNPlusOne]=crdatnplusoneval(P0,P1,P2,P3,T,n)
|
% % Evaluate cubic Cardinal spline at n+1 values for given four points
% % and tesion. Uniform parameterization is used.
% % INPUT
% % P0,P1,P2,P3: Given four points in N-dimional space such that
% % P1 & P2 are endpoints of spline.
% % P0 & P3 are used to calculate the slope of the endpoints
% % (i.e slope of P1 & P2).
% % For example: for 2-dimensional data P0=[x, y],
% % For example: for 3-dimensional data P0=[x, y, z]
% % similar analogy for P1, P2, AND P3
% % T: Tension (T=0 for Catmull-Rom type)
% % n: number of intervals (spline is evaluted at n+1 values).
% % OUTPUT
% % MatNbyNPlusOne: Evaluated (interpolated) values of cardinal spline at
% % parameter value u. Values are in N-dimensional space.
function [MatNbyNPlusOne]=crdatnplusoneval(P0,P1,P2,P3,T,n)
MatNbyNPlusOne=[];
% u vareis b/w 0 and 1.
% at u=0 cardinal spline reduces to P1.
% at u=1 cardinal spline reduces to P2.
u=0;
MatNbyNPlusOne(:,1)=[evalcrdnd(P0,P1,P2,P3,T,u)]'; % MatNbyNPlusOne(:,1)=length(P0)
du=1/n;
for k=1:n
u=k*du;
MatNbyNPlusOne(:,k+1)=[evalcrdnd(P0,P1,P2,P3,T,u)]';
end
% % --------------------------------
% % This program or any other program(s) supplied with it does not provide any
% % warranty direct or implied.
% % This program is free to use/share for non-commerical purpose only.
% % Kindly reference the author.
% % Author: Dr. Murtaza Khan
% % Author Reference : http://www.linkedin.com/pub/dr-murtaza-khan/19/680/3b3
% % Research Reference: http://dx.doi.org/10.1007/978-3-642-25483-3_14
% % --------------------------------
|
|