Rank: 129318 based on 0 downloads (last 30 days) and 0 file submitted

George Lim


Personal Profile:


Watch this Author's files


Comments and Ratings by George Lim
Updated File Comments Rating
16 Apr 2011 Learning the Extended Kalman Filter An implementation of Extended Kalman Filter for nonlinear state estimation. Author: Yi Cao

Hi! This is a nice code for EKF. I have a question though: In your example if we assume that the value 0.05 is unknown parameter and we want simultaneous state and parameter estimation can we augment the state as with the parameter as:
n=4; %number of state
q=0.1; %std of process
r=0.1; %std of measurement
Q=q^2*eye(n); % covariance of process
% or Q=diag[Q 0]; % if no process noise is included in the parameter
R=r^2; % covariance of measurement
f=@(x)[x(2);x(3);x(4)*x(1)*(x(2)+x(3));x(4)]; % nonlinear state equations
h=@(x)x(1); % measurement equation
s=[0;0;1;0.1]; % initial state
x=s+q*randn(4,1); %initial state % initial state with noise
P = eye(n); % initial state covraiance
N=20; % total dynamic steps
xV = zeros(n,N); %estmate % allocate memory
sV = zeros(n,N); %actual
zV = zeros(1,N);
for k=1:N
z = h(s) + r*randn; % measurments
sV(:,k)= s; % save actual state
zV(k) = z; % save measurment
[x, P] = ekf(f,x,P,h,z,Q,R); % ekf
xV(:,k) = x; % save estimate
s = f(s) + q*randn(3,1); % update process

Contact us