Cong,
Points on the boundary of the polytope are expected to violate the inequalities by small amounts due to finite precision arithmetic. When I compute the violations for your A,b data with the code below, I find that they are indeed very small O(1e-13),
>> V=lcon2vert(A,b);
>> slacks=bsxfun(@minus, b,A*V');
>> violations = slacks(slacks<0)
violations =
1.0e-13 *
-0.1066
-0.0355
-0.5684
-0.0711
-0.0355
-0.0355
-0.5684
-0.0355
-0.2842
-0.5684
-0.1066
-0.2487
-0.3375

I just did a test about your program, and I found that an extreme vertex that obtained does not satisfy all inequalities. Note that I just test inequalities case (3D):
A=
-32.7680000000000 17.6400000000000 -3.20000000000000
-3.37500000000000 6.25000000000000 -1.50000000000000
17.5760000000000 2.56000000000000 2.60000000000000
79.5070000000000 10.8900000000000 4.30000000000000
32.7680000000000 -17.6400000000000 3.20000000000000
3.37500000000000 -6.25000000000000 1.50000000000000
-17.5760000000000 -2.56000000000000 -2.60000000000000
-79.5070000000000 -10.8900000000000 -4.30000000000000
b=
5
18
68
244
2
-11
-61
-219
One of the extreme vertices: [1.5530 4.9322 9.7233]
In order to test if this three values satisfy all inequalities, I multiply A by [1.5530 4.9322 9.7233]' to compare the new set of b values with the previous b values, and I found not all of new b values less than the original b values, which means they are not satisfied.

Hi Richard,
You might already have a modification that you like, but I encourage you to look at QLCON2VERT, in my release yesterday. It allows you to supply an x0 as you asked, but it also works when there are equality constraints, i.e. x0 only has to be in the relative interior. Also, QLCON2VERT will skip the boundedness check by default, which can save a lot of time if you know a priori that the set is bounded. Finally, LCON2VERT itself should be faster now for certain problems. It now checks first whether the origin is an interior point, something it can do very quickly, before performing more complicated searches.

Disregard the previous question, I now see that it is easily modifiable. Simply
1. pass an extra argument x0 to con2vert
2. check if x0 in the polyhedron
2a. If yes, continue as normal with s = x0;
2b. Otherwise, set s = slackfun(pinv(A)*b) and proceed as if there were no x0.

Comment only