Rank: 2267 based on 62 downloads (last 30 days) and 3 files submitted
photo

Jaco Versfeld

E-mail
Company/University
University of the Witwatersrand

Personal Profile:

 

Watch this Author's files

 

Files Posted by Jaco Versfeld View all
Updated   File Tags Downloads
(last 30 days)
Comments Rating
29 Mar 2010 MFSK modulation in AWGN noise, with Reed-Solomon decoding Simulate an AWGN channel with noncoherent MFSK modulation and Reed-Solomon coding. Author: Jaco Versfeld mfsk, awgn, reedsolomon coding, communications 26 1
  • 5.0
5.0 | 1 rating
26 Mar 2010 Extended Euclidean Algorithm for polynomials over GF(2^m) Implementation of the extended Euclidean algorithm for polynomials over GF(2^m) Author: Jaco Versfeld communications 15 1
  • 4.0
4.0 | 1 rating
06 Apr 2009 Reed-Solomon errors-and-erasures decoder An errors-and-erasures decoder for Reed-Solomon codes based on the Massey-Berlekamp algorithm Author: Jaco Versfeld reedsolomon, errorsanderasures dec..., masseyberlekamp algor..., communications, forward error correct... 21 2
Comments and Ratings on Jaco Versfeld's Files View all
Updated File Comment by Comments Rating
21 Jul 2013 MFSK modulation in AWGN noise, with Reed-Solomon decoding Simulate an AWGN channel with noncoherent MFSK modulation and Reed-Solomon coding. Author: Jaco Versfeld Kevin King

excellent job

well done

28 Mar 2010 Reed-Solomon errors-and-erasures decoder An errors-and-erasures decoder for Reed-Solomon codes based on the Massey-Berlekamp algorithm Author: Jaco Versfeld ahmed shehab

my Graduation Project is about Reed-Solomon codes...
o the first thing we must do it is how to generate finite field by using matlab

28 Mar 2010 Extended Euclidean Algorithm for polynomials over GF(2^m) Implementation of the extended Euclidean algorithm for polynomials over GF(2^m) Author: Jaco Versfeld ahmed shehab

sorry i mean like this
this is function is Y=generation(N,X)
N is number of bits
X is the generation polynomial function example X^3+X+1;
i need it to extensions to the binary field- finite field GF(2^m);
if i input Y=generation(8,[1 0 1 1])
the output is
000
001
010
100
011
110
111
101
............................
am make one put i have error this is
....................................................
function Y=generation1(N,X)
N>=0;
K=log2(N);
Y(2:K+1,1:K)=eye(K,K);
Yp=Y(2,1:K);
for i=1:N-(K+1)
Yn=Yp(K);
for j=1:K
Z=xor(Yp(j),Yp(K));
Yn(j+1)=xor(Z,X(j+1));
end
Y(K+2+i,:)=Yn(j+1);
Yp=Yn;

end

28 Mar 2010 Extended Euclidean Algorithm for polynomials over GF(2^m) Implementation of the extended Euclidean algorithm for polynomials over GF(2^m) Author: Jaco Versfeld ahmed shehab

27 Mar 2010 Reed-Solomon errors-and-erasures decoder An errors-and-erasures decoder for Reed-Solomon codes based on the Massey-Berlekamp algorithm Author: Jaco Versfeld ahmed shehab

hi
i want ask you if you can help me with make function that extensions to the binary field finite field GF(2^m)..
this function is like
function Y=generation (N,X)
N is number of bits
X is the generation polynomials function

Contact us