image thumbnail

updated 2 months ago

Deep Learning Toolbox by Rasmus Berg Palm

Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets and more. With examples. (machine learning, deep learning, autoencoder)

image thumbnail

updated 2 years ago

The matrix implementation of the two-layer Multilayer Perceptron (MLP) neural networks. by Marcelo Fernandes

The matrix implementation of the two-layer Multilayer Perceptron (MLP) neural networks. (ann, mlp, backpropagation)

Y=runMLP(X,Wx,Wy)

[Wx,Wy,MSE]=trainMLP(p,H,m,mu,alpha,X,D,epochMax,MSETarget)

XOR_Example.m

image thumbnail

updated 2 years ago

Multilayer Perceptron Neural Network Model and Backpropagation Algorithm for Simulink by Marcelo Fernandes

Multilayer Perceptron Neural Network Model and Backpropagation Algorithm for Simulink. (ann, mlp, backpropagation)

ANN_MLP_BP_Batch_Mode_Training

ANN_MLP_BP_Incremental_Mode_Training

image thumbnail

updated 2 years ago

Tutorial de Backpropagation - Un algoritmo de entrenamiento para redes neuronales by Paul Acquatella

Tutorial en Español acerca del algoritmo Backpropagation. Para uso académico y educativo solamente. (redes neuronales, perceptron, entrenamiento)

backpropagation.m

forwardcomp(X,W,L)

setupbackpropagation.m

image thumbnail

updated 5 years ago

A very simple and intuitive neural network implementation by Carl Löndahl

Short code and easy to understand. Example data set provided. (backpropagation, neural network, machine learning)

mendez()

neural.m

image thumbnail

updated almost 7 years ago

Control system for DC machine with current back-propagation and two levels of excitation by Sasha Zorin

Control Scheme for DC Machine with back-propagation: robustness modeling, uncertainties detection, c (electronics, backpropagation, control)

control_system_for_power_facility

image thumbnail

updated 12 years ago

M-files for "Neural Networks" by Herve Abdi

M-files for demos, exercises, and implementations. (neural and fuzzy syst..., autoassociator, heteroassociator)

P=randperm(n)

W=learn(W,F,Y,i,t,theta,eta);

W=learn(W,F,Y,i,t,theta,eta);

image thumbnail

updated 15 years ago

rndmpair.m by Istvan Berkeley

It randomizes the order of vectors within the matrices (fuzzy logic, neural networks, randomize)

rndmpair(Matrix1, Matrix2)

Contact us