image thumbnail

updated 6 months ago

Vectorized Bisection Search by Sky Sartorius

Find x such that f(x) = target. Vectorization allows for some key advantages over FZERO. (bisection, search, root)

bisection(f,lb,ub,target,options)

image thumbnail

updated 1 year ago

Numerical analysis example by Gholamreza (Shahab) Anbarjafari

this program is a simple example of numerical analysis application in MATLAB. (root, numerical analysis)

NumericExample.m

image thumbnail

updated 1 year ago

Newton-Raphson Iterative Solver for Systems of Equations by John Fuller

An N-R iterative root-finder for systems of N equations and N unknowns. (newton, raphson, iterative)

nrsolve(F,dFdx,xi,tol,max_iter,varargin)

testnrsolve.m

image thumbnail

updated 1 year ago

FFT of amplitude modulatin by brajmohan sharma

matlab code (root)

AM_fft.m

image thumbnail

updated 1 year ago

find zeros, local maximums, loacal minimums by Maxim Vedenyov

3 functions: [z isrise]=find_zeros(s); mn=loacal_minimums(s); mx=loacal_maximums(s); (zero, root, local maximum)

[z isrise]=find_zeros(s)

op=loacal_maximums(s)

op=loacal_minimums(s)

image thumbnail

updated 2 years ago

muller by osman onur gürler

its mathematical muller method for find roots of equations (muller, root, mathematics)

muller.m

image thumbnail

updated 2 years ago

bisection by osman onur gürler

bisection root finding code (bisection, yarılama, yöntem)

yarilama.m

image thumbnail

updated 2 years ago

secand by osman onur gürler

calculates equation roots for border points (secand, root, equation)

sekant.m

image thumbnail

updated 2 years ago

Newton's Method by Harmon Amakobe

Finds better successive approximations for the root of a function using Newton's Method. (newtons method, newton, method)

newt(func,gss,ite,tol)

image thumbnail

updated 2 years ago

COMPLEXROOTS by Bernhard Stroebel

COMPLEXROOTS(X, N) returns all (N) complex Nth roots of X. (root, complex nth root, mathematics)

r=complexroots(x,n)

image thumbnail

updated 2 years ago

Bisection by Wolfgang Putschögl

Computes the root of a function f by bisectioning. (approximation, solve, mathematics)

bisection(f,a,b,delta)

image thumbnail

updated 3 years ago

Signal processing by Mubarak

this is a code to estimate frequencies of two closely sinusoid in random noise. (root, thanks)

sinsep.m

image thumbnail

updated 3 years ago

Finding zeros and intersections by Patrick

With data (x,y), the function finds "x" that correspond to y=y0. (root, zeros, intersections)

fzero_data(x,y,y0)

image thumbnail

updated 3 years ago

UISETSCREENPIXELSPERINCH by Varun Gandhi

Tool that can be used to easily set the Root Property: 'ScreenPixelsPerInch' (potw, resolution, root)

uisetscreenpixelsperinch.m

image thumbnail

updated 4 years ago

Calculate roots of Chebyshev polynomials. by Russell Francis

Calculate the roots of a Chebyshev polynomial of arbitrary degree. (chebyshev, root, approximation)

ChebyshevRoots( n, type, range )

image thumbnail

updated 4 years ago

smartnonlinrgen by Ali Mohammad Razeghi

finds the roots of a set of nonlinear equations (mathematics, root, nonlinear)

smartnonlinrgen ( funcvec , xold , es , maxit )

image thumbnail

updated 5 years ago

newton_raphso by Ali Mohammad Razeghi

uses Newton-Raphson method ( modified ) to find the root of a function (root, root finding, newton)

newton_raphso ( func , xr , n , es , maxit )

image thumbnail

updated 7 years ago

Calculate Effective or RMS Values by Jan Lubina

Calculates the RMS for discrete time vectors. (current, rms, integration)

[XEFF,INDRISE,INDFALL]=calcEff(varargin)

image thumbnail

updated 8 years ago

weighted_rms.m by Christian Schultes

Calculate the max weighted root mean square in different window. (linear algebra, weighted, root)

weighted_rms(signal)

image thumbnail

updated 9 years ago

newtonmve by Jordi Soler Penades

Solves non-linear multiple variable system using Newton method. (approximation, interpolation, nonlinear systems)

[sol,k]=newtonmve(fnewt,x0,tol,maxiter)

image thumbnail

updated almost 11 years ago

ldlt by Brian Borchers

This collection compute square root free Cholesky factorizations of the form A=L*D*L' (cholesky, root, square)

[L,D,E,pneg]=mcholmz1(G)

[L,D]=ldlt(A)

[newL,newD]=ldltdown(L,D,v)

Contact us