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1 The problem

The package HermiteEig approximates a finite number of eigenvalues and eigen-
functions of time-independent one-dimensional Schrödinger problem

−d2u

dx2
+ V (x)u = Eu, x ∈ (−∞,∞) , u ∈ L2(−∞,∞)

Introducing the linear transformation ξ = αx for α > 0 the eigenvalue problem
becomes

−d2Ψ
dξ2

+ α−2V (α−1ξ)Ψ = E (α)Ψ, ξ ∈ (−∞,∞) , Ψ ∈ L2(−∞,∞) (1)

where the eigenvalues E (α) depending on the parameter α are connected with
the original eigenvalues E by E = α2E (α).

By setting
Ψ (ξ) = e−ξ2/2y (ξ) ,

(1) becomes
−y′′ + 2ξy′ + V (ξ) y = E (α) y

where
V (ξ) = α−2V (α−1ξ)− ξ2 + 1

is the modified potential.
We search an approximation of the new unknown function y of the form

yN (ξ) =
N−1∑
n=0

cnψn (ξ)

where
ψn(ξ) =

1√
2nn!

√
π

Hn (ξ) , n = 0, 1, 2, ...

are the normalized Hermite polynomials.
For the practical implementation, we define the vectors c and t by

cT = (c0, c1, c2, ...)

tT = (ψ0, ψ1, ψ2, ...)

so that y(ξ) = cT t (ξ) = tT (ξ) c.
Let us find now a matrix X for which

ξ · y(ξ) = ξ · cT t (ξ) = (Xc)T t (ξ) ,

i.e. the coefficients of ξ · y((ξ) are Xc. By using the property of Hermite
polynomials

Hn+1 (ξ) = 2ξHn (ξ)− 2nHn−1 (ξ)
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we have for the functions ψn the three-term recursion

ξψn (ξ) =
√

n

2
ψn−1 (ξ) +

√
n + 1

2
ψn+1 (ξ)

where ψ−1 (ξ) = 0 and ψ0 (ξ) = π−1/4. Consequently, the non-zero elements of
X are

Xi,i+1 = Xi+1,i =

√
i

2
, i = 1, 2, ...

Of course, in practical calculation we must truncate this infinite matrix to have
a finite order N ., so that we obtain only an approximation of the exact result.
The corresponding Matlab command of the package is

X=mult(N);

Then, in general,
ξmy(ξ) = (Xmc)T t (ξ)

and
f(ξ)y(ξ) = (f(X)c)T t (ξ)

for analytical functions f , i.e.

f(ξ) =
∞∑

k=0

fk
ξk

k!

Moreover,
y(ξ)
ξm

=
(
X−mc

)T
t (ξ)

if the l.h.s. has no singularity at the origin.
Similarly, let us find the differentiation matrix D giving

dy

dξ
= (Dc)T t (ξ) .

The derivatives of Hn satisfy H ′
n = 2nHn−1 so that ψ′n =

√
2nψn−1 and the

non-zero elements of D are

Di,i+1 =
√

2i, i = 1, 2, ...

We truncate this matrix to the order N but this time, if y is described by N
coefficients cn, the above differentiation is exact. More, we have

d2y

dξ2
= (D2c)T t (ξ) .

The Matlab command of the package to calculate the matrix D of order N
is
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D=deriv(N);

Applying these formulae to equation (1), we get

[−D2 + 2XD −X2 + V (X) + IN

]
c = Ec

If we define the matrix

A = −D2 + 2XD −X2 + V (X) + IN

the vector c satisfies the eigenvalues/eigenvectors problem

Ac = Ec (2)

2 MATLAB codes

1) The package HermiteEig contains the files pd.m, x2t.m,mult.m, deriv.m
and sph.m

a) The function pd.m (physical domain),

[x,w]=pd(n);

calculates the nodes and weights for the GaussHermite quadrature, i.e.

I ≡
∫ ∞

−∞
e−x2

f(x)dx ≈
n∑

k=1

f(xk)wk = w*f

b) The function x2t.m

t=x2t(n,x)

calculates the values of the normalized Hermite polynomials ψk, k = 0, 1, ..., n
at the points x.

Consequently, if

f(x) = c0ψ0(x) + c1ψ1(x) + ... + cnψn(x)

and cT = (c0, ..., cn), we have f(x) = cT ∗ t = tT ∗ c, for x ∈ (−∞,∞).
The code x2t.m could be used to transform the spectral representation c of

the function f into the physical representation f(x) of values at the grid x,

f(x) = t′ ∗ c

or to transform the physical representation f(x) into the spectral representation
c

c =
(
t−1

)′ ∗ f(x)

for moderate values of n. Of course, the direct formula

cn =
∫ ∞

−∞
e−x2

f(x)ψn(x)dx

4



together with pd.m could be used, i.e.

c = [t ∗ diag(f)] ∗ wT

For non-analytical functions f , the formula f(ξ)y(ξ) = (f(X)c)T t (ξ) doesn’t
work. In his case, we can use as transformation matrix

F = [t ∗ diag(w)] ∗ [
diag (f(ξ)) ∗ tT

]

instead of f(X).
c) The functions X=mult(n) and D=deriv(n) calculate the matrices X re-

spectively D.
d) The main function [L,psi,x,w,t]=sph(fun,n,a) calculates the eigen-

values L, the eigenfunctions psi, the nodes x, the weights w and the matrix t.
The input parameters are the potential V (x) in the function fun, the dimension
of the discretized problem n and the scaling factor a. Of course, only the first
eigenvalues are highly accurate while the last ones are spurious.

The subfolder examples contains some test problems from the literature,
many of them from MATSLISE [1] and SLEDGE [5].

3 Examples

3.1 Morse problem

Let us consider the potential [2],

V (x) = (e−γx − 1)2, γ = 0.005π

with N = 100 and the optimization parameter α = 0.1. Many of he calculated
eigenvalues (file morse.m, command morse) coincide with the exact eigenvalues

En =
(

n +
1
2

)
γ

[
2−

(
n +

1
2

)
γ

]
, n = 0, 1, ...,

[
1
γ
− 1

2

]

see the figure 1.
Other example is the problem [1]

V (x) = 9e−2x − 18e−x

The numerical computation (morse1) gives, for N = 100 and a = 1
L(1:4)
ans =
-6.25001304171899
-2.24999748945656
-0.24999051632800
0.09169739225792

This problem has a continuous spectrum in (0,∞), with only 3 negative
eigenvalues: −6.25, −2.25 and −0.25 so that the above result is 1.e−5 accurate.
However, the truncation of the domain to a bounded interval is more efficient.
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Figure 1:

3.2 Symmetric double well potential

Let us consider the potential [2]

V (x) = υ4

(
x2 − 1

2
υ−1

4

)2

with υ4 = 0.01, α = 1.1 and N = 100. The calculated eigenvalues (file sdwp.m,
command sdwp) are

L(1:12)
ans =

1.40404860529767
1.40404860529776
4.17019360599931
4.17019360599934
6.87008883371401
6.87008883371409
9.49857838718786

9.49857838719109
12.04930948633407
12.04930948667311
14.51420502298122
14.51420504812104

in very good coincidence with those from [2]. See also figure 2 for a plot of the
eigenfunction corresponding to L(12) eigenvalue.

3.3 Polynomial potential

Let us consider the quartic potential (file quartic.m, command quartic)

V (x) = x2 + υ4x
4
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Figure 2:

for N = 100, α = 1 and υ4 = 0.01. The first calculated eigenvalue (ground state
energy) is

L(1)
ans =

1.00737367208140

with a difference of 2.e− 14 to that calculated in [3].
Other potential of this type is the sextic potential (file sextic)

V (x) = x2 + υ6x
6

For N = 100, α = 1.8 and υ6 = 0.01, the first calculated eigenvalue (ground
state energy) is

L(1)
ans =

1.01674136375471

with the same difference 2.e− 14 to that calculated in [3].

3.4 Gauss potential

Let us take now
V (x) = −e−βx2

for β = 0.01, α = 0.3 and N = 100. The first six calculated eigenvalues (gauss)
are

L(1:6)
ans =

-0.90376398798077
-0.71916893344509
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-0.55080167079856
-0.39974972170785
-0.26746369362934
-0.15601325257593

with differences less than 1.e− 14 to that calculated in [3].

3.5 Asymmetric double well potential

Let us consider the potential [3]

V (x) = c1x
2(x + c2)(x− 1)

for c1 = 100, c2 = 0.25, α = 1.2 and N = 128. The first four calculated
eigenvalues (adwp) are

L(1:4)
ans =

-4.27734483985478
7.08051743865770
19.81776188766494
36.20933855713141

with a difference 1.e− 6 to that calculated in [3].

3.6 Anharmonic potential

Let us consider the problem [1]

V (x) = x2 +
λx2

1 + gx2
, λ = 0.1, g = 0.1

The numerical computation (anharmonic) gives, for N = 100 and a = 1 the first
eigenvalue L(1)=1.04317371304445, which coincides with the value found by
matslise.

3.7 Bender-Orszag potential

Let us consider

V (x) = −m(m + 1)
cosh2(x)

The known eigenvalues are Ek = − (m− k)2, 0 ≤ k < m. The calculated values
for m = 3, a = 1 and N = 100 are

-8.99999999998992
-4.00000000003926
-0.99999999993041

in good agreement with the exact values.
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3.8 Non-analytical potential

Let us consider [5]

V (x) =
{

1− e−x2
, x < 0

x log(x + 1), x > 0

with the unique eigenvalue λ0 = 0.7125276014. In this case, the transformation
matrix is V=t*diag(w)*(diag(fun(x/a))*t’);

The command [L,psi,x,w,t]=tab(250,1.35);L(1:2) gives the numerical
eigenvalues

0.71252779084313

1.04274875016349

and the first of them approximates the true eigenvalue with an error of 2x10−7.

3.9 Evolution problems

In [4] an instability was observed numerically when a kind of Hermite spec-
tral method was applied for linear diffusion equation in a unbounded domain.
Precisely, let us consider the problem

ut − uxx = f(x, t), x ∈ IR, t > 0
u(x, 0) = u0(x), x ∈ IR

where

f(x, t) =
[
5(1 + x) cos 5(x + t) +

(
25 + 0.5− 0.25x2

)
sin 5(x + t)

]
e−

x2
4

and
u0(x) = sin 5x e−

x2
4

such that the exact solution of the problem be

U(x, t) = sin 5(x + t) e−
x2
4 .

With the transformation

u(x, t) = y(x, t)e−
x2
2

the above problem becomes

yt = yxx − 2xyx + (x2 − 1)y + f(x, t)e
x2
2 , x ∈ IR, t > 0

y(x, 0) = u0(x)e
x2
2 , x ∈ IR

If we expand

y(x, t) =
N∑

k=0

ck(t)ψk(x)

9



we obtain finally for the coefficients c the differential system

c′ = Dc + F

c(0) = c0

where F and c0 are the coefficients of the expansions of f(x, t)e
x2
2 and u0(x)e

x2
2

with respect to ψ and D is the matrix D2 − 2XD + X2 − IN .
Now, by using the Crank-Nicolson method, we obtain for cj = c(tj) the

equations
cj+1 − cj

dt
= D cj+1 + cj

2
+

F j+1 + F j

2
i.e

(
I − dt

D
2

)
cj+1 = cj +

dt

2
(Dcj + F j+1 + F j

)

Using N = 64 and dt = 0.01 ( diffusion.m) , we obtain after 100 time steps
the coefficients C of the numerical solution at t = 1 and the corresponding
values

(
tT C

)
e−x2/2, with a maximal error 4× 10−5 at the grid points x. Using

t = 0.001 and 1000 time steps the error becomes 4×10−7, without any numerical
instability.

3.10 Fokker-Planck equation

We test now the package for the solutions of the Fokker-Planck equation [6],

∂f(x, t)
∂t

=
∂2 (B(x)f(x, t))

∂x2
+

∂ (A(x)f(x, t))
∂x

via eigenfunction expansion. It is more convenient to work with a self-adjoint
operator. Let us consider the equilibrium solution

f0(x) =
1

B(x)
exp

(
−

∫ x A(y)
B(y)

dy

)
.

If Φ(x, t) is defined by f(x, t) = f0(x)Φ(x, t), we obtain the equation for Φ

∂Φ(x, t)
∂t

= B(x)
∂2Φ(x, t)

∂x2
−A(x)

∂Φ(x, t)
∂x

= −LΦ(x, t)

The operator L satisfies the eigenvalue equation

LΦn(x) = εnΦn(x)

and it is a self-adjoint operator on the space spanned by the eigenfunctions Φn,
with the inner product with the weight function f0(x). The function Φ(x, t) can
be expanded by the complete set of eigenfunctions according to

Φ(x, t) =
∑

n

bne−εntΦn(x)
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where the expansion coefficients bn are determined by the initial condition
f(x, 0).

Computationally it is more convenient to solve the above eigenvalue problem
using the Schrödinger equation

−d2Ψn(z)
dz2

+ V (z)Ψn(z) = εnΨn(z)

where

Ψn(z) = (f0(x(z))
√

B(x(z)))1/2Φn(x(z))

z(x) =
∫ x

(B(y))−1/2
dy

The effective potential is given by

V (z) =
1
4

[
W 2(z)− 2W ′

z(z)
]

and

W (z) =
1√
B

(
A +

B′

2

)
,

B′ =
dB(x(z))

dz

Let us consider the case of a the bistable system

∂f(x, t)
∂t

= ε
∂2f(x, t)

∂x2
− ∂

((
γx− gx3

)
f(x, t)

)

∂x

with γ = g = 1. The corresponding effective potential is

V (z) =

(
z3 − z

)2

4ε2
− 1

2ε

(
3z2 − 1

)

For ε = 0.0125, the package (evol.m with N = 101, ε = 0.0125, the scaling
factor a = 7, the time step dt = 0.1 and the initial distribution f(x, 0) – a Gauss
function) gives the eigenvalues

L(1:10)*49*0.0125
ans =
-0.00000000000000
0.00000000090974
0.95897283387818
1.81602047864552
1.82507262410861
1.83463714345201
2.56075256468075
3.00731102631005
3.16316264504337
3.42456872119340

.................
and the time evolution (see figure 3), in good concordance with those from [7].
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Figure 3: Fokker-Planck equation: time evolution

3.11 Complete list of examples

adwp.m asymmetric double well potential: V (x) = c1x
2(x + c2)(x− 1)

anharmonic.m anharmonic potential V (x) = x2 + λx2

1+gx2

bailey.m Bailey potential, V (x) = x4 + 0.5x3 − 7x2, weight r(x) = 0.5
bender.m Bender potential V (x) = −42

cosh2(x)

birkhoff.m Birkhoff potential, V (x) = x4

bistable.m bistable problem ut−εuxx+
[
(γx− gx3)u

]
x

= 0, u(x, 0) = u0(x)
ch.m hyperbolic cosine potential V (x) = cosh(x)
diffusion.m diffusion problem ut − uxx = f(x, t), u(x, 0) = u0(x)
fokker.m Fokker-Planck operator −εuxx+

[
(γx− gx3)u

]
x

= λu, ε = 0.0125,
γ = g = 1

gauss.m Gauss potential: V (x) = −e−βx2

harmonic.m harmonic potential, V (x) = x2

marletta.m Marletta potential, V (x) = 8000t(t− 2) where t = e−3x/2

morse.m Morse potential, V (x) = (e−γx − 1)2

morse1.m Morse potential, V (x) = 9e−2x − 18e−x

quartic.m quartic potential: V (x) = νx4 + x2

rat.m rational potential, V (x) = 40x2

1+x2

razavy.m Razavy potential V (x) = m2(cosh(4x)−1)
8 −m(n+1)cosh(2x), n = 2,

m = 1, 10
sdwp.m symmetric double well potential, V (x) = ν

(
x2 − 1

2ν

)2

sextic.m sextic potential: V (x) = νx6 + x2

tab.m V (x) = 1− e−x2
for x < 0 and V (x) = x log(x + 1) for x > 0

wolniewicz.m Wolniewicz potential, V (x) = 200(3x4 − 6x2 − 1)
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