
[Copyright 2006, The MathWorks, Inc.]

Creating Web Services with MATLAB® Builder™ JA

Background

MATLAB® Builder™ JA is an extension to MATLAB® Compiler™ and is useful for wrapping
MATLAB® functions into one or more Java™ classes that make up a Java™ component, or
package. These classes can then be used in a Java™ application.

The example included here is a simple temperature conversion module that takes user-supplied
temperature values specified in either degrees Fahrenheit or degrees Celsius and converts them
to the other scale. The example demonstrates how to use the MATLAB® Builder™ JA API to
handle temperatures in various different formats (scalars, matrices, cell arrays, and structs).

Prerequisites

The components were built using MATLAB® Version 7.3 (R2006b) and MATLAB® Builder™ JA
Version 1.0. MATLAB® Builder™ JA 1.0 requires MATLAB® Compiler™ version 4.5.

The web service application was written using Apache Axis 1.4 package, which is a SOAP engine
developed by Apache. Axis also requires an XML parser (refer to relevant links under the Setting
up the web server and SOAP engine section). Axis recommends the Xerces parser, which was
also used for this project.
The Java™ classes were built with JDK™ 1.5.0_6 and run against JRE™ 1.5.0_6. The web
service was hosted on an Apache Tomcat 5.5 web server.

Included Files

This example includes the MATLAB® Builder™ JA component as well as the Web application
files. These files are described here:

MATLAB® file and MATLAB® Builder™ JA project

All of the MATLAB® code used to build this project is included in the Source directory. It is

organized into a MATLAB® Builder™ JA project with appropriate settings. The project file is

named temperatureComp.prj.

Web service

The Axis_Source directory includes the Axis web service, TemperatureModule.java.

Web client

The Axis_Source directory includes the Axis web client, TemperatureModuleClient.java.

Setting up the web server and SOAP engine

In order to run this example, Apache Tomcat 5.5 needs to be installed. The web server can be
downloaded at the following site:

http://tomcat.apache.org/

Note: Throughout the rest this document, $TOMCAT_HOME will be used to refer to the root

directory where Tomcat is installed and $MATLABROOT will be used to refer to the root installation

directory of MATLAB® 7.3 (R2006b).

You will also need Apache Axis (Java™ version) 1.4 which is required to write the web service
and client code:

http://ws.apache.org/axis/

Follow the instructions on Apache’s website for setting up Axis to work with Apache Tomcat. The
installation steps are outlined here:

http://ws.apache.org/axis/java/install.html

If you follow the instructions correctly, you should have the following libraries on
AXISCLASSPATH: axis.jar, commons-discovery-0.2.jar, commons-logging-

1.0.4.jar, jaxrpc.jar, saaj.jar, log4j-1.2.8.jar, xml-apis.jar,

xercesImpl.jar, and wsdl4j-1.5.1.jar.

Once you have configured Tomcat to work with Axis, you should have a directory called axis in

$TOMCAT_HOME\webapps.

Note that some additional libraries need to be downloaded to fully integrate Axis to work with
Tomcat:

i. Axis requires an XML parser. The Xerces parser is recommended by Apache.

 The xml-apis.jar and xercesImpl.jar files must be added to

 $TOMCAT_HOME \webapps\axis\WEB-INF\lib and AXISCLASSPATH.

ii. JavaMail API: mailapi.jar must be added to

 $TOMCAT_HOME \webapps\axis\WEB-INF\lib and AXISCLASSPATH.

iii. JavaBeans Activation Framework: activation.jar must be added to $TOMCAT_HOME

\webapps\axis\WEB-INF\lib and AXISCLASSPATH.

To allow Tomcat to recognize MATLAB® Builder™ JA components, you must copy the following
file to the $TOMCAT_HOME\common\lib folder:

$MATLABROOT\toolbox\javabuilder\jar\javabuilder.jar

Building the MATLAB® Builder™ JA component

The Java™ component used in this example can be built from the source MATLAB® code,
convertTemperature.m, in the Source directory.

To build the component via the command line, type the following command:

mcc -W 'java:temperatureComp,temperatureClass' convertTemperature.m

http://tomcat.apache.org/
http://ws.apache.org/axis/
http://ws.apache.org/axis/java/install.html
http://xerces.apache.org/xerces-j/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/jaf/downloads/index.html

You can also build the component using the MATLAB® Builder™ JA project, which is included in
the Source directory. This project file can be opened using DEPLOYTOOL. For a full list of

instructions on what you need to setup before using DEPLOYTOOL, type the following command at

the MATLAB® command prompt:

web([docroot,'/toolbox/javabuilder/ug/bqp8hfx-1.html'])

also accessible on the web here:

http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/ug/bqp8hfx-1.html

Type DEPLOYTOOL and go to "File->New Deployment Project” to create a new project. Choose

the appropriate component for MATLAB® Builder™ JA, naming the project file

temperatureComp.prj. There should be a folder called temperatureCompClass that gets

created. Rename this to temperatureClass by right-clicking on the folder name and choosing

“Rename Class”. Then, add the source file by right-clicking and choosing “Add File”. Browse for
the convertTemperature.m found in the Source directory.

To build the component, choose "Build" from the "Tools" menu. Verify that the component has

been built successfully. The DEPLOYTOOL output window should say that the compilation is

complete via some text to the effect of “Compilation completed.”

http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/ug/bqp8hfx-1.html

You should see a new folder called temperatureComp that contains another folder called

distrib, which in turn contains the component: temperatureComp.jar and

temperatureComp.ctf.

Now you must make Axis aware of the built component. To do this, place

temperatureComp.jar and temperatureComp.ctf in
$TOMCAT_HOME\webapps\axis\WEB-INF\lib

Building the Axis Web Service

Now that we have built the MATLAB® Builder™ JA component, we must create an Axis web
service that will call this component. The Axis_Source directory contains the service,

TemperatureModule.java. This class exposes a single method called convertTemp that

takes in the temperature input and conversion string and returns the converted temperature(s).

The input and output temperature(s) are specified as java.lang.Object to keep the input

flexible.

The web service uses Java™ reflection to determine the type of the input. The input can be a

scalar double, a two-dimensional array of doubles, a TemperatureCellArray type or a

TemperatureStruct type. The latter two classes are used to indicate to the Web Service that

the corresponding input to the component should be an MWCellArray or MWStructArray,

respectively. Refer to the comments within the service class for further explanation.

One line of code in TemperatureModule.java worth mentioning is line 36, where the

MATLAB® Builder™ JA component is instantiated. You must instantiate the MATLAB® Builder™
JA object specifying the full path to the CTF file's directory so that Tomcat can locate it.

To build the service, the following classes should be on your classpath: javabuilder.jar,

temperatureComp.jar, and the libraries on AXISCLASSPATH. Note that you will need to use

JDK™ 1.4 or 1.5, as listed in the following supported compiler technical note in order to build the
Java classes:

http://www.mathworks.com/support/tech-notes/1600/1601.html

To make AXIS aware of the web service and utility classes, perform the following steps:

1. Build the TemperatureCellArray.java, TemperatureStruct.java, and

TemperatureModule.java using the command line or your favorite Java™ IDE. This

will generate class files in the following package structure:

com.mathworks.toolbox.javabuilder.examples

2. Place the folder structure com\mathworks\toolbox\javabuilder\examples which

contains the web service and utility classes into:

 $TOMCAT_HOME\webapps\axis\WEB-INF\classes

Deploying the Axis Web Service

Now we must register the new web service with Axis. To do this, we need a web deployment
descriptor which contains information about the class. More information about deployment
descriptors can be found in the Axis User's Guide. The deployment descriptor for the temperature
service, deploy_temperature.wsdd, can be found in the Deploy folder. The contents are as

follows:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="temperatureModule" provider="java:RPC">

 <parameter name="className"

value="com.mathworks.toolbox.javabuilder.examples.TemperatureModule"/>

 <parameter name="allowedMethods" value="*"/>

 <beanMapping qname="myNS:TemperatureCellArray" xmlns:myNS="urn:TemperatureModule"

languageSpecificType="java:com.mathworks.toolbox.javabuilder.examples.TemperatureCellArra

y"/>

 <beanMapping qname="myNS:TemperatureStruct" xmlns:myNS="urn:TemperatureModule"

languageSpecificType="java:com.mathworks.toolbox.javabuilder.examples.TemperatureStruct"/

>

 </service>

</deployment>

As can be seen from the name attribute of the service tag, the service will be called

temperatureModule. Important points to note are the beanMapping tags in the

descriptor. These are used to tell Axis that we're passing customized beans, i.e.,

TemperatureCellArray and TemperatureStruct to the service. Axis includes the ability to

serialize/deserialize, without writing any code, arbitrary Java™ classes which follow the

standard JavaBean pattern of get/set accessors. The TemperatureCellArray and

TemepratureStruct classes were designed to follow the JavaBeans™ pattern. For more

information on using arbitrary classes, refer to "Encoding Your Beans – the
BeanSerializer" in the Axis user guide.

To deploy the service, perform the following steps:

1. Start Tomcat.
2. Deploy the service using the deploy_temperature.bat file in the Deploy folder by

double-clicking on it. This batch file assumes that you have set up an environment
variable called AXISCLASSPATH as discussed in the Axis installation guide.

http://www.mathworks.com/support/tech-notes/1600/1601.html
http://java.sun.com/products/javabeans

3. Verify that you see the service listed on the Axis page that displays the list of deployed
services.

Running the Axis client

Now you can run the client to connect to the web service and run some temperature conversions.
The client code is TemperatureModuleClient.java, located in Axis_Source. To run the

code, you will need to have all the libraries specified in AXISCLASSPATH on your Java™

classpath.

Pay special attention to the fourth case, where a jagged array of temperatures are passed in a

TemperatureStruct object. The output that is returned and displayed is not jagged. The

"holes" in the array were replaced with zeros on the MATLAB® side and converted to 32 degrees

Fahrenheit. The reason why this differs from the TemperatureCellArray case is because of

the way the input was created inside the web service. Refer to line 160 in

TemperatureModule.java. An MWStructArray is instantiated and the input is specified

directly as a double[][] rather than creating separate MWNumericArrays for each row of the

matrix. See how this differs from line 87, where each cell of the MWCellArray is assigned a

separate MWNumericArray.

Following are the results of running the client code:

