Software for Particle Tracking
Version 1.0

J. Martin Pastor
Granular Matter Laboratory
Physics and Applied Mathematics Department
University of Navarra

January, 2007

Indice general

1. Introduction

2. Parameter election: param_detect_spot

2.1. Gray scale thresholds election
2.2. Minimum and maximum area election
2.3. Spot eccentricity election

2.4. Ratio between the width and height of spots election
3. Spot detection: detect_spot
4. Obtaining individual trajectories: link

5. Viewing paths: ver_trayectorias

11

15

21

Capitulo 1

Introduction

This is the reference manual for the particle tracking manual. Software
is written in MATLAB. The software is able to to obtain simultaneously
and automatically the path which follows a set of particles appearing in a
collection of images (emph Particle Tracking). In fact, the program is divided
into four separate modules. In order to achieve detecting the path followed
by each particle must execute a module after another in the following order:

1. param_detect_spot
2. detect_spot
3. enlazar

4. ver_trayectorias

Each module is a MATLAB script which is neecesary to introduce a
number of parameters. Next, it will be described each module, explaining
what the corresponding utility parameters, and the result of its execution.

Capitulo 2

Parameter election:
param_detect_spot

This function is used to select the appropriate parameters for detecting
spots of light reflected by each particle with module detect_spot (see section
3) in each image of the sequence to be analyzed. It should be noted that each
particle should ideally reflect an only single spot likewise bright and gray
level. This, in general, no occurs and each particle can reflect several spots of
different shape and gray level (see Figure 2.1). This is therefore necessary to
implement a set of criteria that we allow to automatically choose the bright
spots uniquely characterize each particle. Furthermore, in order to continue
reliably the spot characterizing each particle in a sequence of images, can not
be moved more than half the particle size of one image to the next.

The criteria used are the most basic in detecting light spots on a dark
background in gray scale images.

Figura 2.1: In this bright dots appear different each particle

1. Gray level.
2. Spot size
3. Spot eccentricity.

4. Ratio between spot width and height.

The script param_detect_spot implements these criteria. To this we
must introduce a number of parameters. In order to execute the function,
must type in the MATLAB prompt:

>>param_detect_spot(nfiles,s_raiz,t_1,t_2,area_1,area_2,box,elipsis)

where:

nfiles The number of images that are tested parameters chosen.

s_raiz Common part in the names of all files images. This is a text variable.
t_1 Minimum gray level of the spots to detect.

t_2 Maximum gray level of the spots to detect.

area_1l Minimum area (in pixels) of the spots to detect.

area_2 Maximum area (in pixels) of the spots to detect. Unless you want to
implement this criterion, both area_1 as area_2 must assert 0.

box Maximum ratio between the width and height of spots. If it is desired
that this criterion is implemented, box must be worth choosing 0.

elipsis Maximum eccentricity of the spots. Unless it is wanted to implement
this criterion, ellipsis must assert 1.

With the aim of learning how to use this module, we will adjust parame-
ters with the image shown in Figure 2.1 automatically detecting spots. The
most efficiently is to first adjust the gray levels, the area, the reason between
height and width, and eccentricity. It’s useful to some program to know the
gray level of the pixels that make image (see chapter ?7).

6

Figura 2.2: On the left, it is an image with the centroids of the found without
applying any criterion that the gray level. On the right, it is the binarized
image.

2.1. Gray scale thresholds election

When choosing an upper and lower threshold levels for gray !: all pixels
between these two levels are assigned one and the other zero. Typing in the
MATLAB prompt:

>>param_detect_spot(1,’imagen_prueba’,100,255,0,0,0,1)

we will see the original image on the left and right binarized image according
to the threshold values for ¢.1 = 100 and .2 = 255 that we have chosen
(see Figure 2.2). Also on the original image are marked with the red dot
centroid position of all of the selected spots. When assigning parameters to
other values of 1 or 0, we only binarize the image.

2.2. Minimum and maximum area election

As it is seen in Figure 2.2, some of the spots are found as unwanted re-
flections and do not represent a particle. Thus, once elected thresholds of
gray for binarizing the image, you can select the size of the assigning values
to the parameters area_1 and area_2. Typing in the MATLAB prompt:

>>param_detect_spot(1,’imagen_prueba’,100,255,30,100,0,1)

Tt is important to know if the images is using 8 or 16 binarizando

7

Figura 2.3: On the left, it is an image with the centroids of the spots are
found applying the test areas. To the right is the binarized image.

we will see that in the binarized image (see Figure 2.3) have disappeared all
spots which area is not in the range [area_1, area_2] = [30, 100] pixels. Still,
it can be seen from all selected areas, some particles represent and others are
unwanted reflections.

2.3. Spot eccentricity election

Of all the spots selected after applying criteria areas, we can easily dis-
criminate based its shape. So, we chose the value of ellipsis taking note
that the eccentricity of a straight segment is one and a circumference is zero.
Typing in the MATLAB prompt:

>>param_detect_spot(1,’imagen_prueba’,100,255,30,100,0,0.9)

see that have disappeared from the binarized image most unwanted bright
areas (see Figure 2.4) as the eccentricity of its shape should be less than 0,9.

2.4. Ratio between the width and height of
spots election

As seen in Figure 2.5, after applying the criteria and eccentricity areas
still appear in the original image bright areas selected by red dots are not
representative of the particles and we should remove. To do this, we can
choose only the areas shown on the binarized image such that the ratio be-
tween height and width of spot must be less than a certain amount. Typing

8

Figura 2.4: On the left, it is an image with the centroids of the spots are found
applying the test area and eccentricity. On the right, it is the binarized image.

Figura 2.5: On the left, it is an image with the centroids of the spots are
found applying the test area, eccentricity and ratio of height and width. On
the right, it is the binarized image.

in the MATLAB prompt:
>>param_detect_spot(1,’imagen_prueba’,100,255,30,100,1.7,0.9)

we can see that are missing from the original image red dots corresponding
to the binarized image areas that whose ratio between height and width is
greater than 1,7.

Be warned that it is not necessary to apply all criteria to analyze an
image. In images of sufficient quality, suitably choosing the thresholds may
be sufficient to assign each particle a spot.

Finally, the program param_detect_spot has also some internal param-
eter should not be frequently changed.

dir_0 Folder in which software is placed.

dir_1 Folder in which image is placed?.

format Image files format.

n_number Number of digits to differentiate one from another file.

num Parameter for the early detection of a cluster (num = 4) or second
neighbors (num = 8).

2None of these directories are created when you run the function. Unless they exist,
the function will fail

10

Capitulo 3

Spot detection: detect_spot

The function detect_spot analyzes the sequence of images in which ap-
pearing in the bright spots produced by the reflection of light by a set of
particles.

To run this function, type in the MATLAB prompt:

>>detect_spot(s_raiz,t_1,t_2,area_1,area_2,box,elipsis)

where:

s_raiz Common part in the names of all files images. This is a text variable.
t_1 Minimum gray level of the spots to detect.

t_2 Maximum gray level of the spots to detect.

area_1 Minimum area (in pixels) of the spots to detect.

area_2 Maximum area (in pixels) of the spots to detect. Unless you want to
implement this criterion, both area_1 as area_2 must assert 0.

box Maximum ratio between the width and height of spots. If it is desired
that this criterion is implemented, box must be worth choosing O.

elipsis Maximum eccentricity of the spots. Unless it is wanted to implement
this criterion, ellipsis must assert 1.

These parameters are selected in advance using the function param_detect_spot
(see section 2).

Running this program will get two files, one named “s_raiz_param.dat”
containing the parameters we used in param_detect_spot, besides the size

of the images in pixels, and other “sraiz_fxyA.dat” containing an ordered
data table of nine columns and a number of rows equal the number of spots
detected in all and each of the images (this number may be very large).

1a 2a 3a 4a 5a 6a 7a 8a ga
image x y A =z, vy, width height eccentricity

where

image Image number which appears the spot. If a sequence of images ob-
tained from a video file, depending on the software used for this pur-
pose, the number accompanying “s_raiz” may be different. That is, the
program “VirtualDub” assign numbers start from zero and “Photron
FASTCAM Viewer” from one. By default, detect_spot begins in one.

x Horizontal coordinate of the centroid in pixels.

y Vertical coordinate of the centroid in pixels. We must that the origin of
coordinates for images is the upper left corner.

area Spot area.

x, Horizontal coordinate of the upper left corner of the smallest of rectangles
that contain the spot.

Yo Vertical coordinate of the upper left corner of the smallest of rectangles
that contain the spot.

width Width of the smallest of rectangles that contain the spot.
height Lower of the smallest of rectangles that contain the spot.

eccentricity Spot eccentricity.

It should be noted that the spots are detected in the binarized image ac-
cording to the parameters that we have assigned to detect_spot. Therefore,
the coordinates of centroids are calculated without taking into account the
levels of gray image.

Finally, the program detect_spot has also some internal parameter should
not be frequently changed.

dir_0 Folder in which software is placed.

dir_1 Folder in which image are placed.

12

dir_2 Folder in which data are saved?..
format Image files format.
n_number Number of digits to differentiate one from another file.

num Parameter for the early detection of a cluster (num = 4) or second
neighbors (num = 8).

refresh Number of images analyzed before stopping to cool the computer.

Pause While the computer remains paused to cool the computer.

None of these directories are created when you run the function. Unless they exist,
the function will fail

13

14

Capitulo 4

Obtaining individual
trajectories: link

The function link follows the trajectory of a particle that appears in a
sequence of images that have been previously analyzed with the function de-
tect_spot. To run this function must type in the MATLAB prompt:

>>link(s_raiz,L,epsilon,jump)
where:

s_raiz Common part in the names of all files images. This is a text variable.
L Minimum number of points to be included in each trajectory.

epsilon Maximum displacement (in pixels) of a particle from one image to
the next.

jump Number of images that a particle can disappear in a sequence. Zero
is recommended.

To better understand these parameters are going to outline which method
to follow a particle and build its trajectory.

= We assume that the data are ordered as explained in chapter 3, i.e. a
matrix where each row corresponds to data from only one spot, and
the first three columns are respectively the number of image that ap-
pears spot, the horizontal coordinate of the centroid and the vertical
coordinate.

Image N Image N+1
° © o

Figura 4.1: On the left figure is depicted a schematic of the position of the
spots corresponding to the image N. Which is marked in red corresponds to
the particle being tracked. On right figure is shown the spots of N 4+ 1 as
solid dots and the image of N as empty dots. The empty dot marked in red
is the position of the particle in the image N. The position of the particle in
the image N + 1 is the solid dot in red within the circle of radius e.

s The first step is to know what all the rows of the data matrix corre-
sponding to each image. For example, in row 1 through 16 are the data
of the image number 1 of row 17 to 33 are those of the second image,
and so on.

= Data are selected for a first row of the matrix, these data call them spot
of the first image. Then, comparing with the corresponding rows to the
next image, which seeks the closest spots , and this is the particle that
we are following in this second image. Also the distance between the
spot of the first and second image should be less than “epsilon” (see
Figure 4.1). Following this last condition of proximity, the emph spot
of the second image becomes the first picture and iterate the process.

s If “jump” is zero, the trajectory a particle build stops when the sepa-
ration between the spots closest two consecutive images is greater than
e. If “jump” is nonzero is allowed that is not the spot on a number of
images equal to “jump”.

= All data belonging to any path are marked to avoid repeating them in
the search for new paths in order to expedite the process. item When
finished constructing a trajectory is chosen a new starting point and
repeat the whole process. No paths are considered those that do not
have a number of points greater than or equal to “L”.

As a result of the execution of this function yields the following.

16

“Cutting” files: s_raiz_cut.dat

This file contains three columns. The first is the number of image in the
sequence. The second is the initial row within the image data array. The
third is the final row ara the image within the data matrix.

Image | Initial | Final

1 1 16
2 17 33
3 34 45

Trajectory files: s_raiz_t*.dat

For each particle that has recognized the function link, there is a file that
contains enough data to reconstruct the path followed by the particle as a
function of time. The data structure is as follows.

1a 2a 3a 4a 5a 6a 7a Sa ga
imagen v y A x, y, width height eccentricity
where

tmage Number of the image that appears in the spot of the particle. You
must know the rate imaging to determine the point in time where it
belongs.

x Horizontal coordinate of the centroid in pixels.

y Vertical coordinate of the centroid in pixels. We must that the origin of
coordinates for images is the upper left corner.

area Spot area.

x, Horizontal coordinate of the upper left corner of the smallest of rectangles
that contain the spot.

Y, Vertical coordinate of the upper left corner of the smallest of rectangles
that contain the spot.

width Width of the smallest of rectangles that contain the spot.
height Lower of the smallest of rectangles that contain the spot.

eccentricity Spot eccentricity.

17

When “jump” is nonzero, any of the points that has appeared in the file
path could not be real. This is because of a particle has lost a number of
images smaller or equal to “jump”, the trajectory points corresponding to
these lost images were calculated from linear interpolation with the nearest
point these. To distinguish these points, the remaining data other than the
centroid coordinates are zero.

Index files: s_raiz_ind.dat

This file is a column of integers. Each row represents the file “s_raiz_fxyA.dat”
belonging to any of all possible trajectories analyzed.

Parameters file: s_raiz_Les.dat

This file stores the parameters that have been constructed trajectories,
ie. “L”, “epsilon” and “jump”.

Other parameters

El programa enlazar utiliza otros parametros internos que no es necesario
variarlos a menudo. Son los siguientes:

dir_0 Folder in which software is placed.

dir_1 Folder in which datar resulting from “linking” is save.

dir_2 Folder in which data is saved.

dir_3 Folder in which image is placed!.

n_number Number of digits to differentiate one from another file.
format Image files format.

coletilla File extension that containing the data from the detection of the
spots.

Pausar While the computer remains in pause between the reconstruction of
two paths.

INone of these directories are created when you run the function. Unless they exist,
the function will fail

18

IMPORTANT

Importantly, by changing the parameters of the function link, the number
of paths found for the same sequence of images may vary and duplication
problems appear. To avoid them, every time you execute this function, the
following files will be automatically deleted: s_raiz_cut.dat, s_raiz_t *.dat,
s_raiz_ind.dat and s_raiz_Les.dat.

We should also note that by construction, this function can reconstruct
the trajectories followed a collection of particles contained in an image se-
quence, whichever method was used to detect the positions thereof, provided
that the data has been stored similar manner as was done with the file
“s_raiz_fxyA.dat” (see chapter 3).

19

20

Capitulo 5

Viewing paths: ver_trayectorias

This program is used to display each path built with the script link (see
section 4). To run it simply type in the MATLAB prompt:

>>ver_trayectorias(s_raiz,ind)
were:

s_raiz Common part in the names of all files images. This is a text variable.

ind Image sequence that we want to represent (recommended one).

When running the function, the centroid coordinates in function of time
is represented , and the particle that has followed that path marked with a
red circle for each path that has been built (see Figure 5.1).

After each path represented, all paths that have been found are shown
together in different colors. In this image can cross paths because there are
not represented in function of time (see figure 5.2).

The program ver_trayectorias uses other internal parameters do not
need to change them often. They are:

dir_0 Folder in which software is placed.
dir_1 Folder in which data are saved.
dir_2 Folder in which path files are saved.

dir_3 Folder in which image are placed®.

None of these directories are created when you run the function. Unless they exist,
the function will fail

trajectory11. y coordinate
-180

miin o
Sy e

-205
]

[=]

pixel
-l

=

200 400 600 800 1000

190.5

190 ﬁ
1895 li.‘i

18!

f
165 ‘lﬁgv{\

pixel

©
i

188

1875
]

200 400 B00 800 1000

Figura 5.1: Top left, vertical coordinate of the centroid in function of time.
Bottom left, horizontal coordinate of the centroid in function of time. In both
figures, the red cross marks the spot “ind” in the whole sequence of images.
Right, “ind” image sequence in which the particle appears marked with a red
circle.

22

Trajectories

50 h ﬂ
100+ L’rj
’ f

-180

pixel

200

280+

-300
u]

L L
50 100

L L)
150 200 250
pixel

Figura 5.2: The full set of the trajectories

n_number Number of digits to differentiate one from another file.

format Image files format.

23

