PROGRESS IN NATURAL SCIENCE

Vol. 16, No. 9, September 2006

Application of the wavelet transforms on axial strain calculation
in ultrasound elastography’

LUO Jianwen, BAI Jing™" and SHAO Jinhua

(Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China)

Received November 4, 2005; revised January 4, 2006

Abstract

In ultrasound elastography, the axial strain distribution within. biological tissues is ccliilated as t!ve numerical derivative

(differentiation) of the estimated axial displacement field. Unfortunately, the numericz! desivative is unstable because it con greatly ampli-
fy the noises, especially at high frequencies. This work focuses on the axisi sirain. calculatior: 7rom the estimated axjal displacements using
wavelet transforms (WTs), including continuous wavelet transforms (CWTs, and discrete wavalet transforms (DWTs) . The feasibility of
the WT-based method using the quadratic sp'ine tunction is veritied by computer simiiarions and some phantom data. Results indicate that

the WT-based method can effcctively reduce the amse amplification in axial strain calculation.
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Ultrasound elastography has become a promising
method for quantifying and imaging the elastic prop-
erties of biological tissues!' 3. In ultrasound elastog-
raphy with a static or quasi-static compression, tissue
axial strains are calculated from the derivative of the
displacements with

estimated axial respect to

spacel"™). However, the common differentiation op-
eration amplifies the noises in the displacement esti-
mation, especially at high frequencies[4’5]. Re-
searchers have proposed different methods to reduce
the noise of the strain image, e.g. the combination of
the low-pass filter or moving average filter and the
derivative formula'®%), the least-squares strain esti-
mator (LSQSE)! and the method of the low-pass
digital differentiator (LPDD)!7/.
based on wavelet transform was also propose

Similar to adaptive strectching strain estimator!®’, it

A strain estimator
d[8] )

uses the scale factor maximizing the wavelet transfer
function to calculate the strain. Though this method

is effective, it is time consumingm.

In this work, a new method based on wavelet
( WTs )[10,11]’

wavelet transforms (CWTs) and discrete wavelet

transforms including continuous
transforms (DWTs), is proposed for axial strain cal-
culation in elastography. It is known that the WT
with a wavelet function having no more than n van-
ishing moments is a multiscale differential opera-

tor!1®™1) " According to this property, the local ex-

trema (modulus maxima) or zero crossings of the first
and second derivatives are widely used for singularity
detection (e. g. edge detection) and characterization
of a signal“z_m]. Recently, both the CWTs and
DWTs were applied to approximate derivative calcula-
tion in analytical chemistry and chemometrics™!’ 2],
The WT-based derivative calculation has also been ap-
plied to discrete vibrational data for detecting open
cracks in damaged beams!??*, and to derivative
analysis of hyperspectral signatures for computing
scale-space images and spectral fingerprints!®®!. Us-
ing the Mallat’s algorithm[m’ll] or the A’ trous algo-

[10’11], the DWT-based method has the advan-
[25]

rithm
tage of high computational efficiency

In this work, the quadratic spline function (i.e.

)[15,19] is

the derivative of the cubic spline function
used as the wavelet function. The corresponding
CWTs and DWTs are used to calculate the axial
strains from the estimated axial displacements in ul-
trasound elastography. Results of computer simula-
tions and phantom data processing show that the
CWTs and the DWTs have the properties of both de-

noising and differentiation.
1 Theory
1.1 CWT-based differentiation method

The CWT of a signal y(x) is defined as''01124]
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where s and T are the dilation parameter and transla-
tion parameter, respectively; ¢(z) is a finite energy
function having a zero average called mother wavelet,
basic wavelet or wavelet function.

Consider a wavelet function ¢ {x) defined by the
derivative of a smoothing function 6 (z) plus a mi-
nus. The smoothing function 8 (x) has a fast decay

and a nonzero constant integral 35[10,24]

j 0(x)dz = @(w) |,_o = K#0, (2)

where @(w) is the Fourier transform of 9(x). Eq.
(2) also establishes that ¢'{:c) has no mcre than cne
vanishing moment- 1V 24

It has been. proved that the CWT y(Z )" with
the above wavelet function is just the derivative of the
signal y () smoothed by a weighted average kernel

0.(x), which corresponds to the smoothing function
g(x) dilated through s, weighted through \/l_ and
5
turned over through - 21024 As a result, the
CWT with the given wavelet function ¢ (x) has the
combined properties of data smoothing and differenti-

ation. In particular, one can verify that!10-24]

lim MK@Z - dulz) (3)
$ §

According to Eq. (3), it is natural to use

—\W

z . L
372 to approximate the derivative. A small value
5

K
of the dilation parameter results in high noise sensitiv-
ity, while a large value of the dilation parameter is re-
lated to a large averaging domain and hence results in
strong noise cancellation.

The frequency response of the above-mentioned

method can be derived as 2t

Y{(wis)” :iw@(—sw) A
K. Y(o) - K @

where Y{(w) and Y (w;s)” are the Fourier trans-

H(w) =

forms of y(z) and y(Z )", respectively; jw repre-
sents the frequency response of an ideal differentiator.

Furthermore, the tangent of the frequency re-

sponse at the low frequency w =0 satistfies

jiO(— sw) |-
]@( SK) w=0 :j. (5)

As a consequence, the frequency response approaches

H(w) l,_¢ =

the ideal differentiator at low frequencies.
1.2 DWT-based differentiation method

The DWTs can also be used to calculate the ap-
proximate derivativel'7°2225) | Results indicated that
both the CWTs and DWTs showed similar character-
istics with a given wavelet function'®"?. Moreover,
the DWT has an efficient fast algorithm with the
the Mallat’ s algo-
To avoid data subisampling ( decima-
the A’ trons algoritam ' is preferable.
Similay to the CWT-based differentiation method, the
_ydwt
Sl to approximate the

multiresolution analysis, i. e.
rithm!0 11

tion),

DW T based ‘mcthod uses

derivative, where y(a?)dWt is the DWT (i.e. wavelet
coefficients or detail coefficients/information in the
multiresolution signal decomposition’® ™) of y(z)
on the signal decomposition level of n, and 2" corre-
sponds to dilation parameter s in the CWT method.

2 Method

2.1 Axial strain calculation

In the above theoretical analysis, the sampling
interval is assumed to be unit. In ultrasound elastog-
raphy, the sampling interval is equal to the window
separation AW in the cross-correlation analysis for the
axial displacement estimation. Considering this as-
pect, the axial strains e (¥ ) can be calculated from
the estimated axial displacements using the CWT-
based differentiation method using

e(z) = 22 (6)
Ks7"AW
where « ()" is the CWT of the estimated axial dis-
placements u (). The axial strain calculation using
the DWT-based method is similar.

2.2 Boundary effect

Similar to the LPDDs!”), the WT-based differ-
entiation has a boundary effect, i.e. the side-lobe
problem[lo’%’zﬂ. The input signal (axial displace-
ments) has a finite length, and so an apparent abrupt
transient occurs at the data boundaries (i.e. initial
and terminal points). The method of translation-rota-
tion transformation (TRT)[17’22’26’27] eliminates this
transient by subtracting a linear component from the
input signal to reduce the boundary effect.

Before the calculation of CWT, the axial dis-
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placements are processed with the TRT method
by[27]

uTRT(x) = u(zx) - [ax + &1, (7)
where
u(‘zmax) — u(xmin)
a = ’
T max L rmin
and
b = u<xmin> — AT i

Similar to Eq. (6), the derivative of uTRT(x) is
given by
uIRT (2)"
Ks?Aaw’
where uZRT(a'c ) is the CWT of uTRT(;c 7.

TRT(f)

(8)

e

The difference between R {(x) and u(x) is
the linear component as: + b. Therefore, the differ-
ence between their derivative would be the derivative
of ax + b, i.e. a. Finally, the axial strains are cal-

culated by () plus a, which is eliminated in
the TRT method, i.e.

TRT
e(z)=¢

(Z) +a. 9)
When the DWT-based differentiation method is
used, the term of s in Eq. (8) should be replaced by

2" and the CWT uZRT(i)W in Egs. (8) and (9)
should be replaced by the DWT u .~ (% .

3 Simulation

The same method and the single-lesion model
used in our previous work!®! were utilized for Monte
Carlo simulations. More details about the simulation
methods and parameters can be seen in Ref. [9].
The axial displacements were estimated using a win-
dow length of 2 mm and a window separation of 0.5
mm (i.e. at a 75% overlap). Then, with the
wavelet toolbox'?*! in MATLAB 6. 5 (The Math-
Works Inc., Natick, MA), the CWT and DWT
were applied to calculate the axial strains using the es-
timated axial displacements.

Fig. 1 compares the ideal strain image (top
left), the strain image calculated by the commonly-
used numerical derivative method (two-point formu-
la) (top right), and the strain images calculated by
the CWT method with different dilation parameters
(bottom rows). All images correspond to a region of
50 mm X 50 mm. The vertical axis denotes the axial
direction (depth), while the horizontal axis denotes

the lateral direction (width). As can be seen qualita-
tively from Fig. 1, the strain variation of the strain
images significantly decreases with the increasing di-
lation parameter. Therefore, the elastographic signal-
to-noise ratio ( SNRe )!230) is significantly im-
proved. However, the improvement of the SNRe
seems to be at the expense of a lower contrast and ax-
ial resolution (AR)PV32) | Fig. 1 also shows the su-
periority of the CWT method over the conventional
derivative method for axial strain calculation.

Derivatiye

Fig. 1.
lated by the common numerical derivative method (top right), and
the strain images calculated by the CWT method (bottom rows)

The ideal strain images (top left), the strain image calcu-

with different dilation parameters (s).

To compare the performances of different dila-
tion parameters quantitatively, the elastographic con-
trast-to-noise ratio (CNRe)!2%33]
ly related to the detectability of lesions, is calculated
from the strain profiles along the central line of the

tissue and shown in Fig. 2. The CNRe is defined
as!5:29:31

, which is ultimate-

2y, ~ n, )?
CNRe = —5———, (10)
c +o
Sy 5

where p_ and ps represent the mean values of the
b

strains in the background tissue and the lesion, while

2 2 . .. .
o_ and o denote the strain standard deviations in the
b 1

background and the lesion, respectively. As can be
seen in Fig. 2, the CNRe first increases with the di-
lation parameter, peaks at the dilation parameter of
9, and then decreases with its further increasing.

Fig. 3 presents the strain image calculated by
the DWT method (with the A’ trous algorithm) on
different decomposition levels (# ). The elastographic
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Fig. 2. The CNRe of the strain profiles along the central line of
the tissue obtained by the CWT method with different dilation ma-
rameters. The results are averaged over 50 ‘nidependent realizations
and plotted on a decibel (AR} scale; the error bars represent the
standard deviations.

performances of the DWT method on different de-
composition levels are similar to the performances of
the CWT method with different dilation parameters.
In particular, the performances of the DWT method
on the decomposition levels of 1, 2, 3 and 4 are simi-
lar to those of the CWT method with the dilation pa-
rameters of 2, 4, 8 and 16, respectively.

Tig. 3. The strain image calculated by the DWT method on dif-
ferent decomposition levels (7).

4 Experiment

Due to the lack of suitable elastographic phan-
toms, some raw radio-frequency (RF) data (A-
lines)®* were taken from the University of Texas
Medical School with their permission to validate the
feasibility of the WT-based method for axial strain
calculation. More details of the experimental setting
and parameters can be seen in Ref. [34]. The axial
displacements were estimated using a window length
of 2 mm and a window separation of 0.5 mm (i.e. at
a 75% overlap) .

Fig. 4 shows the pre-compression sonogram of
the phantom (top left) and the axial strain image cal-
culated by the commonly-used derivate method (top
right), as well as the strain images obtained by the
CWT method with different dilation parameters. All
images correspond to a region of 57 mm X 38 mm

(depth X width), and the vertical and horizontal ax-
es denote the axial and lateral directions, respective-
ly. The experimental performances with different di-
lation parameters in Fig. 4 are very similar to those of
simulations.

Sonogram

Derivative
0.02

Fig. 4.
left), the strain images calculated by the numerical derivative
method (top right) and the strain images calculated by the CWT

The pre-compression sonogram of the phantom (top

method (bottom rows) with different dilation parameters (s).
5 Discussion

When applied to discrete data in the computer
calculation, the CWT-based differentiation method
can be equivalent to an LPDD™* | The DWT-based
method can also be regarded as an LPDD according to
the implementation of Mallat’ s algorithm and A’
trous algorithmw' 0] The filter lengths of the LPDDs
corresponding to the CWT or DWT increase with the
increasing dilation parameter or the decomposition
level?). In Ref. L[5,
LPDDs, i.e. the noise amplification factor, the mini-

three properties of the

mum square-error and the optimum cut-off frequen-
cy, were successfully used to explain the results of
different LPDDs, including the SNRe, the contrast,
the CNRe and the AR. It is expected that the above
three parameters can also be used to explain the re-
sults of the CWT or DWT method since both methods
can be equivalent to specific LPDDs. The noise am-
plification factor, the minimum square-error and the
optimum cut-off frequency will decrease with the in-
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creasing dilation parameter or the decomposition lev-
el. Therefore, the noises will be eliminated more and
thus the SNRe will be improved, at the expense of a
reduced contrast and AR. The CNRe combines the
behavior of the noise (or SNRe) and contrast!>2%30]
Therefore, there exists a trade-of {323 for the se-
lection of dilation parameter or decomposition level to

obtain the highest CNRe.

The quadratic spline function was used as the
wavelet function. However, other wavelet functions,
e.g. the Haar wavelet function (equivalent to the
dbl, biorl.1 or syml function)18:25:21)  the deriva-
tive of the Gaussian
(Gausl Y% and the biorthogonal spline wavelet
(biorl. 1, biorl. 3 and biorl. 53211 cauld also be
used as long as thev have nc move than one vanising
moment. The comparison of diffsrent wavelet func-
tions and different cilation parameters or decomposi-
tion levels should be performed. Other than the
CNRe, the SNRe, the contrast and the AR should be
studied quantitatively[7]. In addition, comparison of
the WT-based method and other methods'> %"} needs
further investigation.

smoothing  function

6 Conclusion

In this work, the axial strains in ultrasound elas-
tography have been calculated from the estimated axi-
al displacements using the WTs, including CWTs and
DWTs. Computer simulations and some phantom da-
ta have validated the feasibility of this method. Re-
sults show that the WT-based method can greatly re-
duce the noises in axial strain calculation. However,
further studies including the comparison of different
parameters and different methods are needed.
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