
Description of the MATLAB functions
SENS_SYS and SENS_IND.

V. M. García Mollá¤,a , R. Gómez Padillab
aDepartamento de Sistemas Informáticos y Computación,

Universidad Politécnica de Valencia, SPAIN
bI.E.S. Meliana (Valencia), SPAIN

June 12, 2002

Abstract
The functions SENS_IND and SENS_SYS are extensions of the ODE15s

Matlab ODE/DAE solver (version 5.3). These new functions solve ODE/DAE
systems while, at the same time, calculate derivatives (sensitivities) of the
solution with respect to parameters.

These functions are still under development and must be used with
caution.

1 Introduction
The general form of an ODE/DAE system is:

F (t; y; y0) = 0 (1)

y(t0) = y0; (2)

This system shall be a DAE if @F
@y0 is singular. The Matlab sti¤ ODE/DAE

solver ODE15s [1](written by Mark W. Reichelt, Lawrence F. Shampine, and
Jacek Kierzenka[4] [5]) can solve a wide subset of this kind of problems, those
that can be stated in the form:

M(t)y0 = f(t; y) (3)

y(t0) = y0;

In this case, it would be a DAE if matrix M(t) is singular.
ODE/DAE systems with parameters appear quite often in engineering :

M(t)y0 = f(t; y; u) (4)

y(t0) = y0;

and it is usually desired to study the dependence of the solution with respect
to the parameters:

¤Corresponding author: vmgarcia@dsic.upv.es

1

Example 1 The Gas-Oil cracking problem

µ
y

0

1

y
0
2

¶
=

µ ¡(u1 + u3)y
2
1

u1y
2
1 ¡ u2y2

¶
;

µ
y1(0)
y2(0)

¶
=

µ
1
0

¶

This is a ODE system with three parameters.
It is also common that some experimental data is available, and what is

needed is to …nd the real (or ”best”) value of the parameter, so that the solu-
tion …ts the experimental data (parameter estimation problem). It can be
desired as well to study the dependence of the solution with respect to initial
values, which can be used to solve boundary value problems.

There are many real problems where it is necessary to obtain the derivatives
of the solution of an ODE/DAE system with respect to some extra parameters.
The subroutines SENS_IND and SENS_SYS have been written to perform this
task. Both have been written ”over” the ODE15s solver (in order to keep its
excellent features), and both have the same calling sequence (very similar to
that of ODE15s). They di¤er in the algorithm used to compute the derivatives.
SENS_IND uses the ”Internal Numerical Di¤erentiation ” approach, described
…rst by H.G. Bock in [2] and in deep detail by D. Leineweber [3]; SENS_SYS
uses the iterative approximation based on directional derivatives, in a similar
form to that used by T. Maly and L. R. Petzold [6].

Both perform the same task, but, as a general rule, SENS_IND is faster and
SENS_SYS can obtain more accurate results.

Next, the use of these subroutines shall be described. It would be very
useful to the possible user to learn …rst about ODE15s, since most arguments
are identical.

2 Use of SENS_SYS and SENS_IND
Both functions have the same calling sequence, so that we will only comment
SENS_SYS. The simplest way of calling SENS_SYS is:

>>[T,Y,DYDU] = SENS_SYS(ODEFILE,TSPAN,Y0,OPTIONS, U)

The arguments shall be described next, mentioning at the beginning whether
the argument is new or ”inherited ” from ODE15S:

INPUT ARGUMENTS:

² ODEFILE (ODE15s): This argument must contain the name of an m-…le
(function) of Matlab which contains the de…nition of the system to be
integrated. For the gas_oil problem, we may have the following ode…le,
which would be saved as gas_oil.m:

function Y=gas_oil(t,X,‡ag,U)
Y(1)=(-U(1)-U(3))*X(1)^2;
Y(2)=U(1)*(X(1)^2)-U(2)*X(2);
Y=Y’;
For details about writing ode…les, see ODE15s help or [1].

² TSPAN (ODE15s): This must be a vector containing, at least, the time
interval for the integration. If solutions (and derivatives) are needed at
speci…c integration points (T0, T1, T2, ..., Tend), then the vector must be
[T0, T1, T2, ..., Tend].

² Y0 (ODE15s) Initial values.

² OPTIONS(ODE15s) Through this parameter the user can control the de-
fault integration parameters in ODE15s and the other MATLAB solvers:
absolute and relative tolerances, vectorization of the m-…les, whether the
system may be a DAE or not, etc. check the ODE15s help for details.
Usually all these options have default values.

² U (Optional in ODE15s, necessary in SENS_SYS) This argument must
be a column vector containing the parameters.

OUTPUT ARGUMENTS:

² T (ODE15s) Times at which the solution is given.

² Y (ODE15s) the solution, calculated at the times in T.

² DYDU(SENS_SYS). Array, possibly three-dimensional, containing the
derivatives of the solution Y with respect to the parameters in U.

If the T vector has NT rows (or time points), the system de…ned in ODE-
FILE has NY equations and unknowns, and the U vector has NU parameters,
then the DYDU array will have dimensions NT £NY £ NU.

In the gas-oil example, taking a integration interval from 0 to 4, and taking as
values of the parameters u =

¡
0:9875 0:2566 0:3323

¢T
, the system solution

and the derivatives can be obtained calling SENS_SYS (or SENS_IND):

>>[tn,yn,dydu]=sens_sys(’gas_oil’,[0 4],[1 ;0],[],[0.9875;0.2566;0.3323]);

Since no options have been set, the OPTIONS argument is left empty. Once
executed, the array DYDU will have three dimensions; the …rst shall be the
number of time points, the second the number of equations of the system and
the third the number of parameters; in this case, NT £ 2 £ 3. For example, we
may plot the derivatives of Y (1) and Y (2) with respect to U(1).

>>plot(tn, dydu(:,:,1)).

If the output is wanted at certain time points (for example, 0:0.5:4), the call
would be:

>>[tn,yn,dydu]=sens_sys(’gas_oil’,0:0.5:4,[1 ;0],[],[0.9875;0.2566;0.3323]);

2.1 Vectorization
As in ODE15s, the integration shall be faster if the m-…le (ODEFILE) is coded
in a ”vectorized” manner, so that f(t,y,‡ag,[U1,...,Un]) returns [f(t,y,‡ag,U1),
.., f(t,y,‡ag,Un)]. The input parameter VECPAR must be used to inform
SENS_IND that the input ode…le is ”vectorized”.

>>[T,Y,DYDU] = SENS_SYS(ODEFILE,TSPAN,Y0,OPTIONS,U,VECPAR)

It must be set to 1 if the ode…le is vectorized, and to 0 if it is not. The
default is 0 (Not vectorized). Again using the same example, if the ode…le is
vectorized:

function Y=gas_oilv(t,X,‡ag,U)
Y(1,:)=(-U(1,:)-U(3,:)).*X(1,:).^2;
Y(2,:)=U(1,:).*(X(1,:).^2)-U(2,:).*X(2,:);

Then, the solution and the sensitivities can be found (faster) with the call:

>>[tn,yn,dydu]=sens_sys(’gas_oilv’,0:0.5:4,[1 ;0],[],[0.9875;0.2566;0.3323],1)

Moreover, since the vectorization procedure is the same as in ODE15s, in
the OPTIONS argument the vectorized option may be set to ’on’ (See ODESET
help); as an example of use of ODESET, the tolerances are increased to 1e ¡ 8
and the ’Vectorized’ option is set to ’on’:

>>opt=odeset(’AbsTol’,1e-8,’RelTol’,1e-8,’Vectorized’,’on’);
>>[tn,yn,dydu]=sens_sys(’gas_oilv’,0:0.5:4,[1 ;0],opt,[0.9875;0.2566;0.3323],1)

However, under some circumstances discussed below, SENS_IND and SENS_SYS
will fail with vectorized ode…les.

2.2 Dependence of initial values with respect to parame-
ters

Some times the initial values depend on the parameters as well; a common case
would the need to study derivatives of the solution with respect to the initial
values.

The default initial values of the derivatives is zero. But when the derivatives
of the initial values with respect to the parameters are nonzero, a new argument
(INITFILE) must be used:

>>[T,Y,DYDU] = SENS_SYS(ODEFILE,TSPAN,Y0,OPTIONS, U, VEC-
PAR,INITFILE)

This new argument must be the name of a function that takes as input
arguments the initial values and the parameters vector, and must return the
derivatives of the initial values with respect to the parameters. Let us suppose
that we want to calculate the derivatives of the solution of the gas-oil problem
with respect to the initial values of the dependent variables (set to [1;1]). To
keep the values of the parameters, we might rewrite the ode…le including the
numerical values:

function Y=gas_oil_ini(t,X,‡ag,U)
Y(1)=(-0.9875-0.3323)*X(1)^2;
Y(2)=0.9875*(X(1)^2)-0.2566*X(2);
Y=Y’;

Note that in this case U is a dummy argument.
Then, we may write an INITFILE, quite trivial in this case:

function Y=ini_gas(X,U)

Y=eye(2);

Of course, the derivatives of the initial values with respect to themselves
form the identity matrix. Finally, we can call the SENS_SYS subroutine:

>>[tn,yn,dydu]=sens_sys(’gas_oil_ini’,0:0.5:4,[1 ;0],[],[1;1],0,’ini_gas’)

At present, the subroutine SENS_SYS fails when (in cases like this) the
parameter vector does not have real in‡uence and vectorization is used. The
SENS_IND subroutine does not have this problem and allows vectorization in
these cases.

2.3 Extra Parameters
There may be extra parameters in the system, and we may not be interested
in calculating the derivatives with respect to them. In this case, we may pass
them as extra parameters (PE1, PE2, ...):

>>[T,Y,DYDU] = SENS_SYS(ODEFILE,TSPAN,Y0,OPTIONS,U, VEC-
PAR, INITFILE,PE1,PE2,...)

As an example of this feature, the former example can be reformulated so
that we do not have to plug the numerical values of the ”old” parameters in the
ode…le, but we can pass them as these ”extra” parameters. Rewrite the ode…le
as:

function Y=gas_oil2(t,X,‡ag,V,U)
Y(1)=(-U(1)-U(3))*X(1)^2;
Y(2)=U(1)*(X(1)^2)-U(2)*X(2);
Y=Y’;

Again, U is a dummy argument (in this case, where we want to study the
dependence with respect to the initial values). Now, the call would be:

>>[tn,yn,dydp]=sens_sys(’gas_oil2’,[0 4],[1;0],[],[1;1],0,’ini_gas’, [0.9875;
0.2566; 0.3323])

This feature is not compatible with vectorization; if extra parameters are
passed, VECPAR must be set to zero and the ode…le must be coded accordingly.

2.4 Solving a simple boundary value problem by ”shoot-
ing”

As an example of possible use of SENS_SYS and SENS_IND, we will show
how to solve an easy two-point boundary value problem, proposed in [7]:

u00 + eu+1 = 0

u(0) = u(1) = 0

This problem must be reformulated to the standard …rst order form:

u0
2 = u1

u0
1 = ¡eu2+1

u2(0) = u2(1) = 0

Here, u1(0) is unknown. To solve this problem through single shooting, we
need …rst to write an ode…le for the …rst order form of the problem:

function y=bvp(t,x,‡ag,U)
y(1)=-exp(x(2)+1);
y(2)=x(1);
y=y’;

Then, an INITFILE for the derivatives of the dependent variables with re-
spect to the initial values at the initial time:

function Y=ini_bvp(X,U)
Y=eye(2);

and …nally, we can run the following script using Newton’s method to obtain
the right value of u1(0) (c in the script):

c=10;
aux=1;
while abs(c-aux)>1e-7

aux=c;
% call to sens_ind, to obtain the value of u1 at the end of the
% time interval, yn(end,2), and the
% derivative of this value with respect to u1(0): dydu(end,2,1);
[tn,yn,dydu]=sens_sys(’bvp’,[0 1],[c0 ;0],[],[1;1],0,’ini_bvp’);
c0=c0-(yn(end,2))/(dydu(end,2,1));

end
plot(tn,yn)

2.5 Warnings and details to be completed

1) The main question which might be set is about the accuracy of the computed
derivatives. It is di¢cult to give a precise answer, but it has been observed that
SENS_SYS gives accuracies of the order of the integrator accuracies, while
SENS_IND accuracies are typically worse. These accuracies can be controlled
through the original ODE15s tolerances, as in the subsection 2.1; the tighter the
ODE15s tolerances, the better the derivatives accuracy. Anyway, the accuracy
attainable is problem-dependent.

It has been found that the default relative tolerance in ODE15s (1e ¡ 3) is
too coarse to obtain good accuracies to the derivatives, so that it has been set
to 1e ¡ 6.

Both methods depend on the selection of a small increment told, used to
build approximations to derivatives. The selection of this parameter is critical;
at present, it has been used the same strategy as described in [3] , where told
depends on the roundo¤ unit " and on the size of the parameter ui.

toldi =
p

" (juij + 0:1) (5)

The 0.1 is added to avoid trouble when ui is close (or equal) to zero. The
strategy used in [6] is more sophisticated and robust, since it depends also
solution of the system and the derivatives. However, this is simpler to implement
and works well for reasonably scaled problems.

2) While some features of ODE15s have been properly extended, others are
still not ”corrected”, such as the statistics collection, events or output functions.

3) Both subroutines have been tested with DAES of index 1 (the kind that
ODE15s can solve) with good results; however, since the initial values for a DAE
must be calculated, the derivatives of the initial conditions must be calculated as
well. The approximation of these …rst order derivatives has been made through
the standard …rst order expression (as below, in equation 7) which may be not
too accurate. However, this should be a concern only for the initial value.

4) As has been mentioned, the vectorization of the m-…les can make the
subroutines SENS_IND and SENS_SYS fail when:

- Extra parameters are passed.
- The parameters (whose derivative needs to be found) passed have no in-

‡uence on the system (as in the last example).

Finally, we want to remark that, since these subroutines are in development
process, they should not be used for critical calculations, and their results must
be checked carefully.

Next, a small sketch of the methods used is given, although we refer the
interested reader to the original references.

3 Description of the methods
Both methods have been implemented trying to minimize the cost; the extra
cost relative to that of ODE15s is due to some loops and an increase in function
calls and triangular solves; no extra jacobians are computed or factorized.

3.1 Internal Numerical Di¤erentiation[2]
The Internal Numerical Di¤erentiation method just computes a set of ”per-
turbed” trajectories, using exactly the same sequence of steps, orders, jacobian
factorizations and solves than that of the ”base trajectories”, computed using
the original unperturbed set of parameters. This is done by selecting an appro-
priate small increment for each parameter ®i (see equation 5).

The base system is integrated using the original parameter vector u and,
using the same time steps sequence, the same jacobians, and, in general, the
same sequence of operations, p integrations are performed with the parameter
vectors:

u(i) = u + ®iei = u +®i(0; ¢ ¢ ¢ ; 1|{z}
i

; ¢ ¢ ¢ ; 0)t; i = 1; ¢ ¢ ¢ ; p (6)

This will give a set of (p + 1) trajectories: the original y and the perturbed
ones: y(1); ¢ ¢ ¢ ; y(p). When all the trajectories have been computed, the deriva-
tives are approximated with the known expression:

dy

dui
¼ y(i) ¡ y

®i
: (7)

Obviously, more accurate formulae may be used (the standard second order
approximation) but it would need another p integrations of the system.

3.2 Iterative approximation with directional derivatives[6]
This approach has been described in several papers in terms of a more general
parameter-dependent DAE system

F (t; y; y0; u) = 0 (8)

The sensitivity system is obtained di¤erentiating the system (8)with respect
to the parameter u, which shall give a new ODE/DAE system which may be
solved along with the original.

The standard stepping algorithm (which is quite similar in ODE15s, DASSL,
and others) may be applied directly to the sensitivity system, but this would
not be too e¢cient. Instead, as proposed in [6], the sensitivity system may be
approximated through a directional derivative …nite di¤erence approximation.
Taking an small increment ®i for the parameter ui (again, like in equation 5),
and de…ning

si =
dy

dui
; (9)

the following systems may be set up (in terms of the general form (8))

F (t; y + ®isi; y
0 +®is

0
i; u + ®iei) ¡F (t; y; y0; u)

®i
= 0; i = 1; ¢ ¢ ¢ ; p (10)

where ei is the ith unit vector. These p systems may be solved substituting
y0 and s0

i by their NDF (or BDF) approximations and solving the nonlinear
algebraic system(which has the same jacobian of the original system) to obtain
si.

References
[1] The Mathworks Inc., MATLAB 5.3 Natick MA (1998).

[2] Bock, H.G., Numerical Treatment of inverse problems in chemical reaction
kinetics. In K.H. Ebert, P. Deu‡hard and W. Jäger (eds.) Modelling of Chem-
ical Reaction Systems (Springer Series in Chemical Physics 18). Springer,
Heidelberg (1981).

[3] D. Leineweber: Analyse und Restrukturierung eines Verfahrens zur direkten
Lösung von Optimal-Steuerungsproblemen (The Theory of MUSCOD in a
Nutshell), http://www.iwr.uni-heidelberg.de/sfb/PP/Preprint1996-19.ps.gz

[4] L. F. Shampine and M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci.
Comput., 18 pp. 1-22 (1997).

[5] L. F. Shampine, M. W. Reichelt and J.A. Kierzenka, Solving index-1 DAEs
in MATLAB and Simulink, Siam Review, 41 pp. 538-552 (1999).

[6] T. Maly and L.R. Petzold, Numerical methods and software for sensitivity
analysis of di¤erential-algebraic systems, Appl.Num. Math 20 (1996) 57-79.

[7] Uri M. Ascher and Linda R. Petzold, Computer methods for Ordinary Dif-
ferential equations and Di¤erential-Algebraic equations, SIAM Publications,
1998.

