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Abstract

Several industrial applications involve high velocity dynamics of solids,
for example forging, machining, crash—tests, collision modelling and many
others. These problems involve large deformations and a complex material
behaviour. A small-time step and a large mesh are required to model rapid
dynamics accurately.

Explicit methods are the most appropriate ones to simulate fast impacts
but not all of them have the ability to conserve mass, momentum (linear and
angular) and energy. Methods which do not have good conservation
properties develop large errors under long time—integrations. In structural
dynamics, solids are usually modelled with a Lagrangian mesh and, in this
case, mass conservation is automatically satisfied.

This dissertation is structured in eight chapters and an appendix. The
first part of the thesis (Chapters 1 to 6) is devoted to present the theoretical
background of the two—step Taylor—Galerkin algorithm in terms of linear
momentum and stresses. The proposed method is momentum conservative.
Energy fluctuations are found to be minimal and stable for long time. The
method can be applied to solid dynamic problems that require good
resolution of small wavelengths, such as high velocity impacts. It is both
fast and accurate when simple linear elements (linear bars in 1-D, constant
strain triangles and quadrilaterals in 2-D) are used and it can be an
alternative to the classical displacement formulations. We also propose a
viscous formulation which is aimed at eliminating the high frequencies in
the solution and static solutions can be achieved if they are required.

The exceptional behaviour of the proposed methodology is demonstrated
by eight numerical examples in the Chapter n° 7. The Chapter n° 8
summarizes the key conclusions and the future works. Finally, the appendix
of this work provides the main details about the design and implementation
of the method using an imperative language.
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David Steinmann translated Melan’s deflection theory into English in
1913 and began using it in 1920. Otmar Amman encouraged engineers to
adopt a progressively greater degree of flexibility of stiffening girders. In
1940, four months after the completion, the first Tacoma Narrows bridge
collapsed in a moderately strong storm, forcing structural engineers to re—
evaluate their reliance on deflection theory.

Adapted from The tower and the bridge. David P. Billington.
Princeton paperbacks, 1985.
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Chapter 1

Introduction

Non-linear finite element analysis is an essential component of
nowadays computational mechanics. The field of dynamics of solids encloses
a large variety of problems. The combination of classical displacement
formulation and implicit methods — Newmark’s family of algorithms [22] is
the most popular — gives fast and accurate results for most of the common
civil engineering problems; for example stiffness dominated problems such
as seismic problems and low velocity impacts.

Nevertheless, in mass dominated problems, for example high velocity
impact dynamics, we find phenomena such as the propagation of shock
waves and very large deformations that cannot be solved with the classical
approach.

The classical approach presents two weak points. The first drawback of
the classical displacement formulations is related to propagation of short
wavelengths. Errors in the velocity of propagation of these waves together
with numerical damping make displacement based finite elements
unsuitable for shock propagation problems. The problem of shocks formation
and propagation is also present in other areas such as fluid dynamics.

Secondly, low order elements such as triangles in 2-D and tetrahedra in
3-D cannot be used because of volumetric locking and inaccuracy in bending
dominated situations.

To avoid these problems a new formulation is created in terms of linear
momentums (or velocities) and stresses. The shock wave must be
represented for short time steps so the advantage of simplicity and speed of
the explicit methods becomes more important than the drawback of
conditional stability.

Taylor—Galerkin finite element schemes provide a good compromise
between accuracy and speed of computations. The basic Taylor—Galerkin

Page 7 of 142



A TWO-STEP TAYLOR-GALERKIN ALGORITHM APPLIED TO LAGRANGIAN DYNAMICS

algorithm was proposed by Donea [3], Zienkiewicz [27] and others for first—
order systems of hyperbolic equations.

The method has been refined since its initial formulation. Taylor—
Galerkin family of algorithms has been first successfully applied in a wide
variety of diffusion problems, fluid dynamics problems. The two—step
Taylor—Galerkin was originated at Swansea [15], [16], [24]. The procedure
has been used efficiently by Morgan et alter [20], [21] in solving
electromagnetic wave problems. Nowadays the method is being developed to
its fullest for solid dynamics applications [11].

The purpose of this work 1s to describe the basic lines of a two—step
Taylor—Galerkin algorithm formulated in terms of linear momentums and
first Piola—Kirchhoff stresses for solid dynamic problems. The proposed
interpolation shape functions for both stresses and velocities are linear.
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Chapter 2
The Continuous Problem

2.1. Preliminaries

The motion of a body can be described by a deformation mapping.
x, =x,(X,,1) (2.1)

X 1s the material coordinate in the reference configuration and x denotes
the position of the particle X at time ¢ in the deformed (current)
configuration.

In the reference configuration the volume of the body is Vpand
density po. At a given time t, the body has a volume Vand a density p.

Reference configuration Current configuration

X|,.\|

Figure n° 1°- Motion of a deformable body
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The Jacobian matrix of the transformation gives the deformation
gradient tensor F.

Ox,
F =
e (2.2)
The determinant of ' is usually denoted by /and it relates volume
and density in the reference and current configuration.
Po (
= 2.3)
p J
dv =JdV, (2.4)
The material velocity is given as
ox (X .t
v, :vi(Xj,t)z’(’) (2.5)
ot
2.2. Governing equations
There are three groups of governing equations.
» Conservation of momentum.
op. OP,
Dot (2.6)
ot o0X ;

Where 1,j=1:3 for a 3-D Cartesian system of coordinates.

Here pis the linear momentum and P is the first Piola—Kirchhoff stress
tensor.

p—pv—pax" (2.7)
i 0" 0 at :
In matrix notation the equation can be written like this,
19
P _prv(p) (2.8)

Ot
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» Deformation—linear momentum relation.

oF o (1
_ vy 7 | _= '5'k 2.
ot a&(gp”j 2.9

Where 1,j=1:3 for a 3-D Cartesian system of coordinates.

=1#j=k}

Here &is the Kronecker delta o .=
’ =0if j#k

In matrix notation the equation is (2.10).

oF _ DIV(p ® Ij (2.10)
ot P,
» Constitutive model.
oy
P ="
'~ GF, (2.11)

w 1s the density of energy per undeformed volume.

2.3. Variationally consitent origin of the equations

The origin of the equations is explained in this section. The second
governing equation (2.9) can be obtained easily deriving the deformation
gradient tensor with respect to time

o _ofa) o (&) 0 (n). 2 (n, 019
or or\ox,) ox,\oa) X \p ) X \p " '

The origin of the first governing equation (2.6) is given by the Hamilton’s
variational principle. We introduce the Lagrangian #,

7=K-1IT (2.13)

Krepresents the kinetic energy and /7 is the potential energy. The
action integral, S, is defined as the integral of the Lagrangian over the time
interval considered,
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t

S = [(K —T1)dt (2.14)

ly

Hamilton’s principle states that the equations of motion can be obtained
by making the action integral stationary with respect to all possible motions
compatible with the boundary conditions. By stationary, we mean that the
action does not vary to first order for infinitesimal deformations. This is
DS [é}c] =0 for all compatible fx. Calculating the linearization of .S and

rearranging,

DS|ax]= H ( P Z‘t’ - DIV(P)jédeodt =0 Vdx (2.15)

So,

ol Z‘; = DIV (P) (2.16)

And this can be rewritten like this using Einstein notation.

op, _ OF,

o oX (2.17)

Internal potential energy

If we assume no external potentials, the only potencial energy is due to
deformation and for a hyperelastic neo—-Hookean material this is given by
the following function of the density of energy per undeformed volume:

w(F)= ; ulg > (F: F)—3]+;K(J—l)2 (2.18)

So, the internal potential energy is the integral of the density of energy
per undeformed volume in the reference domain ().

I,, = [w(F)dQ (2.19)

Sometimes, it is convenient to split the potential into two parts, the
volumetric and the deviatoric energy.

HINT = 1_IVOL +HDEV (220)
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1, =’; [(-1ya0 (2.21)

M, =2 [l (F:F)-3J0 (2.22)

Fxternal potential energy

The external potential energy includes the work done by the external
body forces fzopy and surface forces fsurr.

HEXT :.[fBODY x dQ+ IfSURF -x dl (2.23)
) r

Here, x is the material position. I' symbolizes the boundary of the
domain in the reference configuration. In this project, no external body
forces were considered.

Kinetic energy

The total kinetic energy of the system is given by

1 2 1 2
K—2ipov dQ_Zpoip dQ (2.24)

2.4. Constitutive model

The first Piola—Kirchhoff stress tensor is obtained from the density of
energy function. If a Neo—Hookean model of the material is assumed, the
stresses can be computed with the equation (2.26).

oy

P=""
' oF, (2.25)
P:IL[J_%I:F—;(FIF)F_T:|+K(J—1)JF_T (2.26)

The stress has two parts: the volumetric (2.27) and the deviatoric part
(2.28).

P, =x(J-1)JF' (2.27)
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P, =" {F —;(F :F)FT} (2.28)

The elastic coefficients are

E E

H= m K= m (2.29)

For engineering design purposes, the results obtained can be output in
terms of the Cauchy stress (2.30) and Almansi strain (2.31) tensors.

o =JPF”’ (2.30)
1 -T -1
e:2(I—F F) (2.31)
2.5. Compact wave equation form

If we define the following two vectors, it is possible to put the first two
governing equations (2.6) and (2.9) together in one equation (2.32).

U= {(p)} the vector of the unknowns
(F)

P
~_ ( the matrix of the fluxes of the unknowns
Lo

an + 8Sy _
ot axX,

0 (2.32)

This 1s our conservation—law formulation, which is similar to the
equation of a wave. For 3-D the vectors have the structure shown in (2.33).

The main advantages of the compact form are two:

The discretization is applied only to one equation instead of two
expressions.

The formulation is simpler because all the unknowns are together
and it is more general. It could be used again for problems with a
similar equation (.e. diffusion problems, fluid dynamics...) by
particularizing the content of the vector of unknowns and the vector
of fluxes.
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R, R, R,
P, B, P
o PP P
2 0 0
. /A
y28 0 P 0
El Lo »
FIZ 0 0 1100
K ~
U.]= F” [5,]=- %0 0 0 (2.33)
21
)4
F;Z 0 %0 0
Fzs () O pz p
F, » . . ’
3
F;Z AO
s 0 % 0
0
0 0 D
L P |

Lax [12] was the first author to introduce the use of conservation form
and he showed that the numerical schemes that follow this conservative
form are able to represent discontinuities in the flow variables (shock
waves).

It is also important to remark that the conservation of energy is not

imposed although this methodology is found to have a good energy
conservation property without a clear reason for it.

2.6. Shock waves and Rankine—Hugoniot jump conditions

Shock waves form an important class of solution to the elastodynamic
equations. We will study these waves under the assumptions of homogeneity
and isotropy and in the absence of body forces. The shock waves happen
when the unknowns U are discontinuous.

The original wave equation can be rewritten using the chain rule.

Page 15 of 142



A TWO-STEP TAYLOR-GALERKIN ALGORITHM APPLIED TO LAGRANGIAN DYNAMICS

ou, a3,
E+8X =0 (2.34)
ou, 03, aU, _, .35
o " oU, ox, 35
oU. oU
81} + 4, an =0 (2.36)

The tensor A is usually called the acoustic tensor [6]. The system is
quasi-linear if A is constant and the system is hyperbolic if A4 is
diagonalizable. If A were diagonal we could put the governing equation in
the characteristic form (2.37).

oU. oU
8tl + 40, an =0 (2.37)

6'is the Kronecker delta S, = {: Lif i=j=k }

=0 in other case

This is now a set of independent equations and the solution of the
equation is constant along the characteristic curves.

At a given interface defined by the normal A, the resulting flux—Jacobian
1s given by

opP oP
- op oF 0 aiN
AN = 8(‘5N): p p N = OF (2.38)
oU o —~®I| o &I I®N 0 '
IOO pO p
0
. Op oF |

The Riemann problem is simply the hyperbolic wave equation with
special initial data. The data are piecewise constant with a single jump
discontinuity at some position X;.
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For linear hyperbolic systems the Riemann problem is solved in terms of
the eigenvalues and eigenvectors of the acoustic tensor AN.

ANU -U |+ Ju -U]=0 (2.39)

The Rankine—Hugoniot jump conditions above presented are obtained
directly from the local conservation equations adding the jump. Developing
the equation (2.39) we have:

[P —P IN+c[p -p =0
1 (2.40)
—lp-plON+F -F =0

0

If we include the entropy variable in the system the additional jump
equation would be:

[P p —P p IN+c[E'-E|=0 (2.41)

In other words, singularities can only propagate along characteristics for
a linear system.

2.7. Eigenvalue structure

The first two orthogonal eigenvectors of AN will give the longitudinal
and the transverse shock wave directions. The associated eigenvalues are
the celerity cof the shock wave. The eigensystem is

AN (6U )= —c(oU) (2.42)

The symbol 8 refers to the change Gump) of the variable before and after
the discontinuity.

The left hand side term in (2.42) is

(C:6F)N
AN(SU)=| ®P®N (2.43)
Py

Where C is the elastic constitutive tensor (2.44).

Page 17 of 142



A TWO-STEP TAYLOR-GALERKIN ALGORITHM APPLIED TO LAGRANGIAN DYNAMICS

o
Cg‘/‘kl = oOF = /15@/51{1 + ﬂ(é‘iké‘_ﬂ + 5[15_/1{)

ki

A and u are the Lamé elastic coefficients

. vE _E
T Q+v)(i-2v) 1+

F and vare the Young modulus and the Poisson coefficient.

(2.44)

(2.45)

The eigenvectors U have the structure of the previously described vectors

of unknowns. The system is called hyperbolic if the matrix AN is
diagonalizable with real eigenvalues. If Pdescribes a Neo—Hookean
material, the two main eigenvalues of the system are

A+2
c, = 2 for the longitudinal (or acoustic, or P) wave.
Po

c,= |"— for the transversal (or shear, or S) wave.

It is possible to find two families of mechanisms that give a null
eigenvalue (¢ = 0).

First mechanism: op=0 and OF =—0F " skew symmetric
Second mechanism: =0  and OF leads to plane stress
For the mechanism presented in (2.49) 5F must be such that

C:6F =(T,®T,,T,®T,, T, ®T, +T, ®T,)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

Where T, N =T,-N=T,-N =0 and < > means a linear combination of

vectors.

In the following figure we illustrate qualitatively how different parts of
the one—dimensional waves moving with velocities proportional to their
amplitude finally develop into a shock wave. A similar figure can be found in

[27].
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Figure n°2: Progression of a 1-D wave and creation of a shock [4]

In a linear problem, all the points on the wave move at the same speed.
For a nonlinear problem, the wave advects itself such the local speed
depends on the wave amplitude. The process is called nonlinear steepening
and eventually results in shock waves. A fundamental feature of nonlinear
compared to linear conservation laws is that discontinuities can be
developed even from smooth initial data.
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Chapter 3

The Discretized Problem

3.1. Necessity of a high order conservative method

The governing equation can be expressed in the form (3.1) where the
function £ contains the terms with the spatial derivatives.

oU

i f(3) (3.1)

The simplest idea is to

1. Take initial state of unknowns given on a grid.

2. Compute the flux.

3. Compute the spatial derivatives to get the right-hand side using finite
differences.

4. Get the small change of the unknowns.
5. Update the unknowns.
6. Restart at step 2
Even for short time steps the explicit Euler method leads to conflicts
because of the growing oscillations. Discontinuities lead to computational

difficulties. Finite difference methods in which derivatives are approximated
directly by finite differences can be expected to break near discontinuities.

Conservativeness can be used to check if the code is correct and

conservative methods give better solutions than the schemes that are known
to conserve poorly.
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3.2. Possible numerical approaches

There are four principal families of numerical methods to solve
numerically the hyperbolic problem. The main differences are summarized
here:

a) Spectral methods:

« Representation by a finite set of harmonical functions (sinusoidal
waves, wavelets, etc).

e Good for flows with small non—linear interactions.
o Typically used for flows with low Mach numbers.
b) Smoothed Particle Hydrodynamics (SPH):
o Representation by a finite set of particles that move freely.
o Grid is replaced by particle positions.
o Particle density translates into fluid density
¢) Finite volume methods:
e Restriction: integration over control volume.
e Construction and reconstruction by polynomials.
e Derivatives can become finite differences or can be avoided.
d) Finite element methods:
o Representation by a finite set piecewise polynomials.

e Usually used on an unstructured grid to model the flow around
complex bodies.

o Often used in engineering.

The main types of grids are four:
e Hybrid grid: moving with another speed.
e No grid: SPH (grid is replaced by particle positions).
e Eulerian grid: fixed in space.

« Lagrangian grid: moving with the body (makes the linear 1-D poblem
trivial).
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The aim of this dissertation is to develop a finite element method
approach (a two—step Taylor— Galerkin) with a Lagrangian mesh. Finite
element methods work with elements instead of cells (finite volume) or
points (finite difference). The primary problem is to obtain good numerical
flux solutions that approximate the real fluxes reasonably well.
Conservative high order methods such as two—step Taylor—Galerkin are
effective for computing discontinuous solutions.

3.3. Shock capturing vs. front tracking

Front tracking

The positions of shocks are explicitly followed to allow a different
numerical treatment in smooth regions and near discontinuities. A common
finite volume method in smooth regions is combined with a high order
explicit procedure for tracking the location of discontinuities.

The governing equations are supplemented with jump conditions (2.40)
across discontinuities. These algorithms are complicated in more than one
space dimension because discontinuity surfaces can interact and evolve in
complicated ways.

Shock capturing

The aim is to capture discontinuities in the solution automatically,
without explicit tracking them. Discontinuities are spread over one or more
elements. This kind of scheme was chosen because it is simpler to
implement than a front tracking method.

3.4. A first fractional idea

A possible explicit two—step procedure could be (3.2) and (3.3).

Predictor step-
s 1
5(] 2 :é‘(]n +§M—1fn (32)
Corrector step-
1
SU™ =6U" + MM~ [ (3.3)

This would be an equivalent method to second order Runge—Kutta
algorithm for ODEs extended to PDEs. However, it was found [27] that the
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numerical results were inaccurate after some time due to overdifussion. The
two—step Taylor—Galerkin algorithm is based on this fractional idea but it
balances convection and diffusion, what makes it suitable for long time
simulations.

3.5. Time discretization (Taylor)

A Taylor expansion in time yields

n 2 2
Uin+1 — Uin + AZ'|:8U’:| + At 8 lzji
ot 2| ot

} +O(AF) (3.4)

With ¢, =t +At and U =U,(X ,t)

Using the wave equation to replace the time derivatives by space
derivations and ignoring the third order term we can write

o3, | arlofo3 )|
U =y —ad S | ZAC 910, (3.5
8X_ ; 2 | ot oX ;
Or with a more compact notation
R} : R}
Ui”+1 =U"-At "~ Al g ! (3.6)
oX ; 2 ot oX ;

In the first step we use the following Taylor expansion. From here we
recalculate the spatial derivative of the flux (3.8).

el At 03"
u :=U"-——" 3.7
l 20X ; ©.7)
03 _ pUr-Ur (3.8
0X, At
From the wave equation (2.32) we obtain the following operator
0 03, 0 03, 0 0
= y — _ y :_Aji (39)
ot an oU. oU. 8Xj ‘ 8Xj
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We also define the Jacobian vectors as

4= (3.10)
T du, '
So,
o o3 o [ 03!
N EA | 3.11
Gt[aXJ "anKaXJ (310
Hence,
03" At o (03"
U=U"-At—" + A" £ 3.12
’ Cooex, 2t an[aXJ (3.12)

For 3-D the indices are 1 =1:12, j =1:3, k =1:3.

In an analogous way we operate over the flux matrix.

At 85! At 0T R S

3 2 =3" L =3 ——— A" I — A" U B — (3.13)
! 2o 7T 2 tox, T tox, At
Then,
U™ =U" — At o3, PV S"% _ (3.14)
i i ox, ox \ ' '

U -U"=-At—" (3.15)
1 1 an
3.6. Spatial discretization (Galerkin)

Applying the shape functions as weighting functions in each side of the
equation (3.15), we get

1
n+—
~ 2

6\5[].
oX .

J

N dQ (3.16)

(U -UrVaQ=-At]
Q
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Using Gauss divergence theorem (in 1-D this is just integration by parts)
it 1s possible to separate the contribution of the boundary from the internal
contribution.

LU —UWdo——afS Narea]S e @

With the index cranging from 1 to Nnodes.

For the spatial discretization we interpolate using Co shape functions:
Ui = [Uz ]a Na Sy - lSE/JaNa (3.18)

With the mute index a=1: Npodes. Thus, we lead to the general system of
discretized equations (3.19). A more compact way is (3.20).

U [0 )W N dQ= A 57 | N N ar
(o] -l v o] 5]

a

1 N (3.19)
+At[| 3,2 | N, = dO
ol |l Cex,
MU = f U =U"+6U (3.20)

Equation (3.7) is usually called the predictor step and equation (3.20) is
the corrector step. In the fist step, the balance area of the convective flows
for one element have to be calculated on the nodes of each element so, the
information goes from the nodes to the element (Fig. 3). In the second step,
the balance area for one node is calculated with the help of all elements
which are defined with this node so, the information goes from the elements
to the nodes.

Predictor-Step: Carrector-5Step:

Modes ——=== Element E Elements ——=s= Node N

Figure n° 3" Balance areas [14/
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3.7. Conservative properties of the scheme

The scheme proposed is conservative. The derivation of the Rankine—
Hugoniot jump conditions used the conservation law of U across the shock to
derive the shock speed. With a non-conservative scheme, the shock moves
with the wrong speed.

Lax—Wendroff theorem ensures that if the numerical solution of a
conservative scheme converges, it converges towards a weak solution.

Nevertheless, Lax—Wendroff does not guarantee that weak solutions
obtained using conservative methods satisfy the entropy condition.

3.8. Involutions

The components of the deformation gradient tensor /' must satisfy the
compatibility conditions. The involutions can be expressed through the
following equation:

ROT(F)=V ,xF =0 (3.21)

These conditions were not considered to solve the system because the code
would lose its simplicity. So, it is convenient to define an average rotation
error norm of the element.

1
R = Z x 1 E .
€ OT (F) N HVX H (8 22)

Elem
For short term the error remains bounded. It is probable that the
involutions are necessary to make the system symmetric and to guarantee

the energy stability in problems with long term iterations, very non—linear
systems and coarse meshes.

3.9. Internal energy

The internal energy is an important variable to test the quality of the
solution.

E,,=K+I1,, (3.23)

The total kinetic energy of the system is given by
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2

(3.24)

1
K:ZZ,OM“ P.

0

The Lobatto integration (integration by nodes) is less expensive to
calculate the internal energy than the Gaussian integration, so a possible
calculation of the internal energy is (3.25).

I, =>M, {’2( (/, -1y +';I(Ja‘2/3 (F,:F,)- 3)} (3.25)

3.10. The entropy-like energy variable

We may express the Helmholtz free—energy function in terms of the
internal energy E, the absolute temperature & and the entropy per unit of
reference volume 7:

w=E-no (3.28)

The Clasius—Plank inequality principle is a strong form of the second law
of thermodynamics that states that the internal dissipation Dvror local
production of entropy is non—negative.

Dy D@
D =P'Vp——"—-n—""2>0 (3.29)
INT p Dt 77 Dt

The process is reversible if the internal dissipation is zero (D7= 0)

It would be interesting to introduce a physical entropy—like energy
variable . Entropy can be viewed as the quantitative measure of
microscopic randomness and disorder.

D 1
— |EdQY=|—t¢- pdU (3.30)
Dty '!,00

ok 1 0
— =, \vh 3.31
5B (n7) (3.31)
Lin and Szeri [7] stated that entropy gradients are related with shock
formation. From a physical point of view, it is easy to imagine that when
waves travel into a field with higher sound speed ahead (larger entropy), the
velocity gradient of a compression wave front must grow and exceed a
critical value in order to evolve into a shock (otherwise it relaxes and there
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is no shock). When waves travel into a field with lower sound speed ahead
(lower entropy), all compression wave fronts evolve into shocks.

3.11. The incompressible problem

The expressions provided are well suited for compressible and nearly
incompressible materials. However, to work with incompressible material it
1s necessary to introduce a new variable, the pressure p

p=k(J-1) (3.32)
And now the volumetric potential is re—written like this,

I J 1 Q——j (3.33)

Q

The pressure is interpolated with the shape functions (3.34) and the
volumetric 1st Piola—Kirchhoff stresses are calculated with the expression
(3.35). This little change in the formulation was not implemented and the
code should be slightly modified in case models of fully incompressible
materials were required. It can be found more in Lahiri et al. [10], [11].

p=N,p, (3.34
P, =pF™’ (3.35)
3.12. Error in pressure

There are various error—estimators presented in the engineering
literature. The Z2 estimator described by Zienkiewicz and Zhu [28] is one of
the most effective ones and it is commonly used for linear and non—linear
materials. We have implemented the simplest nodal error estimation based
on the jump of the pressure in each node in the predictor step. However, a
7.2 error—estimate or a similar one is strongly recommended.

elem

= max(p,“")—min(p “") Velem e a (3.36)

press |,
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Chapter 4
Element Types

4.1. Linear bar element

We can use the following simplified model for a 1-D rod problem,

o _oP
ot o0X @1
oF _1ap '
ot p,0X
The one—dimensional constitutive model becomes
2 FP_F7
P="uyu— 4+ x(F-1 (4.2)
N = (F-1)
For small deformations the relation between P and F is linear.
4
P:L#H«yF—U (4.3)

If the Poisson modulus is zero, in fact, we have the classical linear elastic
equation.

P=E(F-1) (4.4)
Putting these two equations in the compact wave equation form we have

8U+8J_0

—t+ = (4.5)
o o0X
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Where,
P
U:H SRS (4.6)

We assume that the rod is discretized in (N/2—1) elements, this is N
degrees of freedom, and all the bar elements have the same length Lr and
uniform material properties.

For nodes inside the rod, this is a=2:(N/2-1), the Taylor predictor is
given by (4.7). For nodes on the boundary, in order to maintain the second
order accuracy, the best way is (4.8) and (4.9).

G N N O B S R I T

oX 4L,

”%_ n_gaS?_ n_ﬁ_(‘n ]l
I:Ui j|1_[U[ 2|:8X:|1_[U[ 4LE( [‘55]3+4[‘5i]z 3[‘551) (4.8)

R e o I O vl 1 R SRS WS

ox |,

The consistent mass matrix for one element is (4.10). The lumped
system is (4.11).

2 01 0
M:jNTz\farX:LEOZO1 (4.10)
£ 6|1 0 2 0 '
0 1 0 2

1 0 0 0]
M:£0100 (4.11)
210 0100 ‘
0 0 0 1]
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Both of these matrices give second order accurate eigenvalues.
Consistent matrix is not always the best non—diagonal matrix. It is possible
to use a higher—order mass (4.12) that was first presented by Goudreau [5].

(4.12)

S = O W

0
5
0
1

hn O = O

1
0
5
0

The higher order mass matrix is just that average of the lumped and the
consistent matrices. Numerical results show that it leads to fourth order
accurate frequencies with uniform and non—uniform meshes [9]. However no
general theory exists yet and the higher accuracy of the hybrid matrix does
not compensate the computational cost.

The right hand side term internal contribution is (4.13). The external
contribution for the nodes on the boundary is given by (4.14).

[£] =—A2ZHSZ’+31 {SU A =A2’H3f+31 {SU (4.13)
rd=ad[5] ) Uk =-af 5] 419

And assembling the system we obtain for the consistent system (4.15).
The lumped system (4.16) is explicit.

201 U 33 -3,
0201 &, 33, -3,
10401 U, 3 -3,
10401 U, 3, -3,
10401 U, 3,3,
L At
- = (4.15)
10401 U, e =S
10401 U, Sys =3
1040 1||8U, 3,3,
1020[|U, ~3,,+33,,
I 102 |&U, | |-3,+33, |
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sU, 33 -3,
SU, 33, -3,
oU, (3,-3,)/2
SU, (3,-3,)/2
oU, (3,-3,)/2
_ ]Af (4.16)
U, , (3,.,-3,.,)/2
U, (3,,-3,.,)/2
U, (3,.,-3,)/2
SU,, ~3,,+33,,
L §UN _ L - SN—2 + 3SN .

The boundary conditions to model an impact on a rod are:

Fixed end-
Un.1 =0 No velocity (strong way)
Free end-

3, =0 No traction (weak way)

Initial condition:
Free end-
U; =po Initial impact

It is important to see that the lumped system basically coincides in 1-D
with the central finite difference algorithm:

U-n+1 _ Un Sfl+1/2 _ 31-1+1/2
i i + i+2 i-2 — 0 (417)
At 2h

i i i-2 i+2

WU -ur)= Azt(— IR 32 (4.18)

In the case of small deformation and linear elasticity the Courant’s
stability condition (4.19) is similar to the Euler condition.

At S,Bh—E (4.19)
C

hg is the smallest characteristic length of the element.
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B is a number between 0.5 (consistent) and 1 (lumped)
¢ 1s the speed in each element

If no transversal effect is considered, the maximum celerity in the bar is
the classical result (4.20).
E
N (4.20)
Yo,

4.2, Constant strain linear triangles

To create the system we need to particularize the M matrix and the right
hand side vector £ for the linear shape functions of the first order triangular
element.

Unknowns and flux vectors

For 2-D the vectors are

pl Pll P12
P, b, b,
F 0
wl=| [5,)=-{ 77 (4.21)
F, ' 0 p/p
E, p/p, 0
_FVZZ_ L 0 pZ/pO_
Predictor step

In the prediction the same amount (4.22) is added in each node of the
element.

0t At ON At
2 ox, 2 °°

Consistent mass matrix

The consistent mass matrix per element is

M,=| N.N,dA (4.23)
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Where ¢/ is the Jacobian of the local — global transformation. If the
coordinates are given in counter clockwise numeration, the determinant is
positive.

For the triangular element, the mass integrals are (4.24), (4.25) and
(4.26).

[N, da= 4, (4.24)
6
A .
[ N,N,d4d=="+ with a#b (4.25)
4 12
24, = Det(J) = Det{if f} (4.26)

So, the elemental consistent mass matrix Mgis

A 214x4 I4x4 I4x4
ME = i I4x4 214x4 I4x4 (4.27)
1 I 21

4x4 4x4 4x4
However, it is preferable to use the lumped matrix instead of the
consistent one because having the same order of accuracy the algorithm

becomes fully explicit with the lumped matrix.

A4

ME = ?EIISXIS (428)
Right hand side vector
- Internal amount of flux:
aN n+l n+l
At[——<N,|3, % | dXdX,=Ary [B N3, * | dXdX, =
A aX ‘ Y a E 4E N ¢ Y a
! (4.29)

1 (\«}Hl
At;Bq 32[\51.]. 2} A,

The elemental area can be obtained from the Jacobian of the local-global
transformation. For the linear triangular element this is

Det(‘]) = (X1‘1 _X1‘3XX2‘2 _XZL)_(XIL _X1‘3XX2‘1 _X2‘3) (4.30)
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The determinant is positive for counter clockwise numeration of local
nodes.

The B matrix components (4.31) are constant.

N L) -

YoX, 24,

Bo= iy =g, 01X

B =0y =, 11D .
==y -l |
=y D)

= 0=y L))

The internal amount of flux generate by the local node c of the element is
- Amount of flux lost through the contour:

! s »
[ EXT]a = _AtINcNa|:SU 2:| Nj&adl’ = _At_[NcNadL|:Sg 2:| NJ'C (4.32)
o4 a o4

a

For the triangular element the boundary integrals are (4.33) and (4.34).

[NdL=[N_ dL= ;LM (4.33)
/ i
1
[N NdL= L (4.34)
!

Where La-c is the length of the side a—c of integration. The external
normal vector to the side a—c is (4.35)

2

X _
le “ } (4.35)
- Xl‘c - X, a)

The amount of flux lost in the side a—c through the node a is

N = sign {Det(J)}{
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L (2T 17t
o L =—AEN T T+ T 4.36
[ ]a 2 ! [3|: ! :|a 3|: ! :|L] ( )

And trough the node cis

L (1Tt 2t
o L =—AEN T T+ S, 4.37
=ty (J30] S]] e

This is a trapezoidal integration of the flux. It is important to remark
that a linear approximation such as (4.38) gives bad results and the scheme
loses its conservativeness.

: L a-c nis a—c L _ a—ec ~n+l
[ Ea)(_;]a :_AI?NJ‘ (|:Sy 2:| j [ EXT]c :_At?]vj [|:~5,j 2:| J (4.38)

It is only necessary to compute the amount of flux lost through the sides
placed on the boundary of the region. The integrals over internals sides are
going to be cancelled and the external flux is added at the end of the loop.

Adding the two terms we get the right hand side vector of the system

=Lt ]+ Aol (4.39)

First Piola—Kirchhof stress tensor

It is important to remind that the Piola—Kirchhoff is obtained in a
slightly different way for plane strain conditions. For large deformation we
use the formula (4.40). For small deformations, it is possible to use the
linear approximation (4.41).

P=w [F _ ; (1+ tr(C))F‘T} K (J=1)JFT (4.40)
With J=det(F).
P:,U[F+FT —§(1+tr(F))I}+m‘r(F)I (4.41)

The corresponding stress tensor P is symmetric for small deformations.
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Boundary conditions

There are two main types of boundary conditions:

- Boundaries without displacement (constant zero velocity). As a
consecuence, we have a traction (reaction) on that boundary.

(4.42)

o o o o ™

The wall boundary conditions are imposed in a strong way, this is, via
the unknowns.

Type of wall Strong conditions
Wall parallel to X | p,=0
Wall parallel to Y | px=0

Sometimes, it is possible to determine the value of the deformation and it
can be convenient to impose those values of #' in a strong way in order to
achieve a more precise result.

- Free boundaries, without tractions.

0
0

N
5,8 ]=- © /Py (4.43)
PN,/ p,
PN,/ p,

_pzNz/po_

The free boundary conditions are imposed in a weak way, this is, using
the fluxes.

Type of free boundary Weak conditions
Free boundary parallel to X | Pw=0 Py=0
Free boundary parallel to Y | Px=0 Py,=0
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4.3. Constant strain linear quadrilaterals

Here we produce the main differences in the formulation between linear
triangles and linear quadrilaterals.

Consistent mass matrix

The elemental consistent mass matrix Mg needs to be evaluated
numerically. The lumped mass matrix is

A
f"i=jfLM4 (4.44)

The elemental area can be obtained from the Jacobian of the local-global
transformation with one Gauss point of integration. The Jacobian matrix of
local — global transformation is not constant and it depends on the local
position (& 7).

:1|:(1_77)(X2 _X1)+(1+77)(X3 _X4) (1—77)(Y2 _Yl)+(1+77)( 3 _th):| (4 45)
4l (1=¢)x, - X))+ 1+ )X, - X,) (=&)Y, -Y)+(1+&)Y,-1,)|
Internal amount of flux
For the local node c of the element this 1s
/e ] = Atf Bcha{3;+2} Det(J)d&dn (4.46)

The integral must be performed with four Gaussian points.

And the Bmatrix components, this is the derivatives of the shape
functions, are now dependant on the position:

_(1_77)‘]22 +(l_§)‘]12 (1_77)‘]21 _(1_95)‘]11
_aNc _L (1_77)‘]22+(1+§)le _(1_77)‘]21_(14'4:)‘]11 ( )
v an - AE (1 + 77)‘]22 - (l + ég)le - (1 + 77)‘]21 + (1 + QZ)JU 447

=), ==&, (), + (-8,
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Chapter 5
Viscous Formulation

5.1. Motivation

In problems which are highly nonlinear, such as high velocity impacts,
the shock waves present high frequencies. Very non—linear cases are more
sensitive to this problem due to the coupling within the different modes in
the solution, which creates an exchange of energy between the high
frequency modes and low frequency vibrations. In any case, the
discontinuities are approximated with continuous functions, the solution
can suffer oscillations which affect the stress level and they can corrupt the
solution over the time.

A way to overcome this is to add an artificial viscosity to damp
numerically the shock wave and to spread the discontinuity.

The artificial viscosity stabilizes the solution by dissipating the high
frequency vibrations. The proposed viscous stabilizations 1s clearly
momentum conserving and variationally consistent provided that the
viscous stresses that are added are zero for rigid body displacements.

It is convenient to choose the same volumetric and deviatoric percentage
of damping to simplify the problem.

i,,zaﬂ yyzaﬂ—h (5.1)
c c

A+2
c= H (5.2)
e

Like this, the dissipation is controlled by the non—dimensional
parameter a.

Where
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The dissipation term can be used with two objectives:

a) To filter the high frequency dispersion error.
It becomes especially effective in nonlinear cases. If the system is slightly
damped it is possible to avoid the corruption of the solution.

b) To get static solutions.
In this case, it is important to realize that the transportiveness of the
flow is controlled by the Peclet number.

Pochy

Pe=— £
Z’VIS + 2lLlVIS

(5.3)

e Pe — 0. No convection, pure diffusion. The flow is quite, it represents
the pure static solution. The diffusion tends to spread the fluxes
equally in all the directions and the initial conditions do not influence
the process after some time.

e Pe — . No diffusion, pure convection. It is the pure dynamic solution

without any kind of damping. The flux is transported immediately
and the initial conditions have a strong influence during the process.

5.2. Viscous constitutive model

A simple dissipative formulation can be derived by using a total
Lagrangian viscous stress tensor.

P=pP"+pP" =Y p.vp (5.4)
OF

In Einstein notation this is

F = 87';” +D,, apk
y aF:j Yy aXl

(5.5)

Where D is a forth order dissipation tensor that can be derived from the
total Lagrangian viscous forth order tensor C in terms of the second Piola—
Kirchhoff.

Page 40 of 142



A TWO-STEP TAYLOR-GALERKIN ALGORITHM APPLIED TO LAGRANGIAN DYNAMICS

S = E

F"P:C:(1(ﬁ7F+FTI:‘D:C: VP g g VP
2 2\~ P

S N | B S O

()

2p, o
= L ele v F e leErp)- Ll Frvp) 5o
0 0
1
D=—FC (5.7)
P
1 A Y7, T
D=—FC="(F®F)+"(F(i+i")F)
Py Py Py
Liv = 5[1«5,1
D, =" FF,+*(E,F,)5,+ ™ FF, 6.8

0 0 0

So finally the viscous first Piola—Kirchhoff stress is given by (5.9) where b
is the Finger deformation tensor (5.10).

P”*=D:Vp= /’} (F:Vp)F + zv (6vp+ F(Vp) F) (5.9)
0 0

b=FF" (5.10)

An alternative formulation can be done using the spatial description of
the elasticity tensor instead of the material representation

c=C:d (5.11)

Where d is the rate of deformation tensor

d= 21(Vp + (Vp)T) (5.12)

0
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And D can be obtained with (5.13). The the resultant viscous Piola—
Kirchhoff is (5.14) where C is the Cauchy—Green deformation tensor (5.15).

1

D= CF”’ (5.13)
Pyt
P =D:Vp="" (F":Vp)F" + * (vpC" + F'(Vp) F') (.10
,OOJ 100']
C=F'F (5.15)

This i1s the result that we used to model the viscous effect.

5.3. Conservation—Law with viscous terms

After adding the viscous term, the governing equations are (5.16) and
(5.17), and the compact wave form is (5.18).

» Conservation of momentum.

o, _ O

ot :8)(/( i (5.16)

+P[/VIS)

» Deformation—linear momentum relation (remains without changes).

OF o (1
—r=—|—po, 5.17
81‘ an(po pz ka ( )
aU a INV VIS
—l+ S =37 )=0
or " oX ( p p ) (5.18)
For 2-D the vectors of unknowns and fluxes are
B pl ] B R][NV R21NV ] _P“VIS PIZVIS_
p2 lelNV P221NV })21V1S })22V[S
F
wl=l " 377 /o0 5= Y Y G
F, | 0 p/p 0 0
F21 pz/po 0 0 0
P, .0 p/p] L0 0
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In general, the results obtained with this method for two—node truss
elements and linear triangles were very good. Nevertheless, the extension of
this approach to quadrilateral elements showed oscillations.
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Chapter 6
Stability and Convergence

6.1. CFL condition

The Courant, Friedrichs and Lewy condition [2], [25] is a necessary
condition that must be satisfied by any scheme if we expect it to be stable
and converge to the solution.

It states that a numerical method can be convergent only if its numerical
domain of dependence contains the true domain of dependence of the PDE,
at least in the limit as At and Ax go to zero. In other words, the propagation
of errors is controlled by the maximum eigenvalue of the normal flux
Jacobian (2.38).

Nevertheless, CFL condition is not always sufficient to guarantee
stability. Even when the CFL condition is satisfied, the method can be
unstable.

6.2. Stability criterion

Like other explicit methods, the two—step Taylor—Galerkin algorithm is
conditionally stable. The stability criterion used is obtained from the one-
dimensional linear equation and then it is generalized to multidimensional
problems

U, ,0U _E,3U_,
o0 X p, OX°

(6.1)

Where £ and Evis are the elastic and viscous elastic modula
respectively.
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c=_|— (6.2)

For the algorithm with a consistent mass matrix and equally spaced
mesh, the following step in each node 7 is

L eaur U= (U eavr oz U2 -z

co1 (6.3)
+ C( + j(U;; —2U" +U,)
2 Pe

And with a lumped mass the expression is (6.4). Where C is the Courant
number and Peis the Peclet number (6.4).

C c 1
e S C(z +pe)<U;; S0 HUL) (6a)
cAt cAx
C — = Pe = '0;: (65)

VIS

It is possible to insert a Fourier mode m of the form (6.6) where jis the
1maginary number.

U’ =1 exp(miAxj)= A" {cos(miAx)+ jsin(miAx)} (6.6)
The amplitude A should not increase in each new step. Introducing the

Fourier mode in the consistent discretization we get (6.7) and with the
lumped mass matrix the resultant expression is (6.8).

1+ c(c + If)(cos(mAx)— 1)— jCsin(mAx) (6.7)
. e

ﬂ,nﬂ 2 . .

}; =1+ C(C -+ P)(cos(mAx)— 2)+ jCsin(mAx) (6.8)
" e

So, the stability condition is

C(C+2j <a (6.9)

Pe

Where a = 1/3 in the case of consistent matrix, this is (6.10), and a = 1 for
the lumped mass, this is (6.11).
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C< - (6.10)
Pe® 3 Pe
1 1
C< | —+1-— (6.11)
Pe Pe
6.3. Generalization of the stability condition

For the Navier—Stokes equations in two and three dimensions we can
obtain a necessary stability condition by generalizing the adimensional
numbers defined above.

(6.12)
_ oA Por Pl

C _ FFo"E
h, Aus + 2l

Where cis now the maximum celerity of the wave, this is the speed of the
pressure waves (5.2) and Agis the minimum length of the element.

6.4. Convergence

Convergence is very difficult to establish theoretically and in practice we
use Lax’s equivalence theorem [12] that states that for linear problems a
necessary and sufficient condition is both consistency and stability.
However, in our case this theorem is of limited use since the governing
equations can be non—linear. Stability is a necessary condition for
convergence, but not sufficient.

In practice, boundedness, conservativeness, and transportiveness are

more critical properties to achieve a realistic engineering solution with
meshes sometimes quite coarse than the order of convergence [19].
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Chapter 7
Examples

7.1.

Bar axially loaded

A straight bar was axially loaded with an instant linear momentum.

Po

—»
—»
—»
—»
—»

|

IS

L

A

Figure 4- Sketch of the problem

The data of the case are the following ones:

Instant pulse po 0.1
Length L 10
Heigth H 1

Young modulus E 1

Poisson modulus v

0.4

Density p

1

n

The purpose of this example is to illustrate a reasonable numerical
damping to minimize the oscillations in 1-D and in 2-D. First, it was
performed a one-dimensional simulation without viscosity with the
following characteristics:

Element type Linear truss 1D
Nodes 101

Ax 0.10

At 0.01

Courant Number | 0.15 <1

Peclet Number 0
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The oscillations appear in the solution from the beginning but they
become more visible after some time.

0.015

0.01

0.005

-0.005

-0.01

-0.015 ! ! ! ! ! ! ! ! !
0

Figure 6 Evolution of displacement in the head of the bar with viscosity

The same simulation was performed with artificial damping and the
results were much better. The key variables are:
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Element type Linear truss 1D
Nodes 101

AX 0.10

At 0.01

Courant Number | 0.15 < 0.82
Peclet Number 4.88

If we compare the Figures 5 and 6, we can conclude that the viscous
model represents better the amplitudes of the high frequency components.

For a quite coarse mesh in 2-D with the following characteristics the

results were also acceptable,

Element type Linear triang 2D
Nodes 63

AX 0.10

At 0.05

Courant Number | 0.10 < 0.87
Peclet Number 6.88

0.015

0.01

0.005

-0.005

-0.01

0 10 20 30 40 50 60 70 80 90 100

Figure 7° Evolution of displacement in the head of the bar with viscosity

The internal entropy-like energy variable (Fig. 8) is constant after the
first steps as it was expected. The average rotational error of F (3.22) gets
reduced with the viscosity (Fig. 9).

The pressure waves evolve quickly concentrating the traction due to the
impact close to the wall. In the Figure n° 10 it is possible to see distribution
of pressure during the peak of traction. The violet zone is the part of the bar
which has zero stress.
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x 10

Entropy
S

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 8 Evolution of entropy-like energy variable

Error RotF
N

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time

Figure 9° Evolution of the rotational error of F
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-4.89¢-005
0.000336
2F 0.000721
0.00111
0.00149
‘ 0.00226
0.00265
ol 0.00303
B 000342
4
6 . . . . )
0 2 4 6 8 10

Figure 10° Distribution of pressure in the bar at Time=10

7.2. Rotating plates

An initial angular velocity () (cycles per unit of time) is applied on a
square plate without constraints. The initial conditions are such that there
1s no steady state.

Figure 11° Sketches of the problem

7.2.1. Square plate

The Figure n° 12 shows a discretization of 8x8 square elements.
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0.5

0.4

0.3

0.2

0.1

-0.1+

-0.2

-0.3F

0.4}

-0.5

-0.6 -0.4

Figure n°12° Original geometry

-0.2

0

0.2

0.4

0.6

Ang. vel. Q 1/27
Side length 1
Young E 1
Poisson v 0.4
Density p 1
Element Linear
Quad
Nodes 81
Ax 0.125
At 0.02
Courant 0.11<1
Peclet o0

As it is possible to see from the figure below, the horizontal and the
vertical displacements oscillate like a sinusoidal wave close to the rigid
solution between dmax= 0.2071 and dmin= —1.2071.

0.4

0.2

-0.2

-0.4

-0.6

Displacement

-0.8

-1.2

-1.4

Horizontal
Vertical

Yy

10

15
Time

20 25

30

Figure n° 13° Evolution of displacement of the upper left corner
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0.02

-0.02

-0.04

-0.06

-0.08

Momentum

-0.1

-0.12

-0.14

-0.16

-0.18
0

Linear
Angular

5

10

15 20
Time

25

30

Figure n° 14° Evolution of displacement of the upper left corner

In the Figure n° 14 the modula of the linear momentum L and the
angular momentum A (7.1) are plotted. No movement of the central node
was appreciated (the linear momentum is null) and the variation of the
angular momentum is close to the machine error.

L:jde
Q

H:jpxde
Q

(7.1)

Although it is not directly imposed, the energy is approximately kept and
it oscillates around the exact value (Fig. 15).

0.09

0.07

0.06

Energy

o o
o o
H (4]

0.03

0.02

0.01}

0

Potential
,,,,,,,,,,, Kinetic
——  Total Energy

a-;";ﬁ:‘#ﬁWWngﬂiﬁf“‘%?ﬁ%i
1 1

0

20

40 60 80

Time

100

Figure 15 Evolution of energy for long time iterations
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000277
000277
0.0217
0.0405
0.0594
00783
00972
0116

0135
0173

06 04 02 a 0z 04 086

Figure n° 16° Pressure in the plate after 4.5 cycles. Deformed geometry

271e-020
0.0001861
0.000241
0.000322
0.000402
0.000483
0.000483
0.000563
0.000644
0.000724

05 0 05
Figure 17° Absolute error in pressure after 4.5 cycles. Deformed geometry

The maximum jump of the pressure defined in the section 3.12 is
approximately 1/4 on the boundary. The jump of the pressure in the centre
is close to machine error.

7.2.2. Triangular plate

For an equilateral triangular plate with the same material properties of
the previous plate under the same angular velocity, the results obtained are
quite accurate even with a very coarse mesh.
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0.5+

0.4

0.3

0.2

0.1+

-0.1F

0.2+

0.5 -04 -03 -02 -01 0 01 02 03 04 05

Figure 18° Original geometry

Ang. vel. Q 1/2r
Side length 1
Young E 1
Poisson v 0.4
Density p 1
Element Linear
Triang
Nodes 25
Ax 0.25
At 0.03
Courant 0.18<1
Peclet o0

In this example, it becomes clear that the rotational error of the
deformation gradient tensor F' is relevant though it remains limited due to

the poor spatial discretization.

0.4

0.35f

0.3F

0.25F

0.2

Error RotF

0.15}

0.1p

0.05

0 ! !

0 5 10 15
Time

20

25

30

Figure n° 19° Evolution of rotational error of F with the coarse mesh

As expected, the momentum remains conserved exactly throughout the
simulation as shown in Figure n° 20. The momentum calculated in each step

was based on the previous expressions (7.1).
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-0.01

-0.02

Momentum
S
o
w

-0.04

-0.05

-0.06

-0.07
0

0.035

0.03

0.025
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Energy

0.015

0.01
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Angular
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Figure n° 20 Evolution of momentum

30

Potential
Kinetic
Total Energy

g

10

15
Time

20

25

Figure n°21° Evolution of energy

30

The time history of energy is still quite good in the beginning but for long
time iterations the solution is corrupted by the noise of the high frequencies.
In the next section, 7.3, we propose to add an artificial viscosity to overcome

this problem in very non—linear problems with coarse meshes.
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7.3.

0.0957

0.0974

0.0991
0.101
0.103
0.104
0.106
0.108
0.109
0.111

-0.5

Deformation of a tube

Figure n°21- Pressure after 3.5 cycles

As it was pointed in the previous section, the addition of a little amount
of artificial viscosity can help to obtain smoother solutions because of the
reduction of the noise due to the high frequencies. To show this effect, a long
cylindrical tube has an initial deformation given by the deformation
gradient tensor:

Then, the tube oscillates freely.

0.8
0.6
0.4

0.2+

0.2f
0.41
0.6

-0.81

Figure n°22: Original geometry

1

-0.5

0

0.5

External 1

Radius

Internal

Radus 0.5

Young E 1

Poisson v 0.4

Density p 1

Element | Linear
Quad 2D

Nodes 160

Ax ~0.1

At 0.01

Courant | 0.15<0.98

Peclet ~50
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The chosen mesh is skew symmetric (Fig. 22).

Figures n° 23 Deformed geometry at different times.
Pressure Red = High traction, Blue = High compression
Without numerical damping (left) With some artificial viscosity (right)

0sr

05k

r 05 0 08 1
Time=5 (1/4 of cycle).

1F

08k
0B
04k
02k
0
02r
04k
06

08+

Ak ‘ I

0.8 o 0.5

Time=10 (1/2 of cycle).
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nsl 05+

A 05 0 05 ! r
Time=15 (3/4 of the cycle).

With the inviscid model, the solution is affected by different modes of
vibration. Adding a little amount of viscosity the cylindre vibrates mainly
according to the first mode. Shock waves present high frequency
components which can be artificially smoothed by the numerical scheme
(Fig. 24). If such is the case, the stress intensity will be underpredicted. It is
therefore important to use numerical algorithms with optimal damping and
dispersion properties. Also to be outlined is that the tube remains centred at
the same point and without rotations. This fact demonstrates the
conservation of linear and angular momentum in the inviscid and viscous
cases.

0.45 T T T T T T T T T
0.4+

0.35}

0.25}

0.2+

Displacement

0.1+

0.05F

[ [ — No \iscosity
ol \ Viscous

2 4 6 8 10 12 14 16 18 20

-0.05
0

Figure n°24- Evolution of displacement of the apex of the disk
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7.4. Deformed plate with analytical solution

We consider a square flat plate of unit side length under plane strain.
The left and bottom boundaries were restricted to move only tangentially,
whereas the top and right boundaries are restricted to move normally, as
shown in the Figure n° 25.

X
A

i

8>

3

>

=

&

>

&

& o

BB hERE S s "

Figure n° 25° Test case
Under the assumption of small displacements, this is
u=x-X,

the equation that describes the movement is the classical Euler—Lagrange
equation for plane strain.

(A + p)div(u) + pAu =0 (7.2)

The solution for the given boundary conditions is (7.3).

il 5 {5 )
S1in COS
Cdm) 2 2 (7.3)
5 el |
—COS Sin
- 2 2 -

The initial conditions are (7.4) and (7.5).

u=u, cos(

p,=0 (7.4)
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F=1I+V,u

(7.5)

For values of the maximum initial displacement uo below 1le-3, there is
no appreciable difference between the analytical solution and the numerical
one. The code was run for the model which is summarized in the chart.

. Extgrnal 1
ool ?idlus 1
nterna
08| Radius 0.5
o Young E 1
oer Poisson v 0.4
or Density p 1
4T Element | Linear
o3 Quad 2D
o2r Nodes 81
0.1} AX 1/8ﬁ
0 0 0j2 0:4 OjG 0:8 1 At 0.02
Courant | 0.15<1
Peclet 0
Figure n° 26: Original geometry

The average element rotational of F is small and bounded (Fig. 27).

Error RotF

3.5

Time

Figure n° 27 Evolution of rotational error
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The total internal energy is perfectly maintained (Fig. 28) provided that
no external forces are applied. The method posseses good energy
conservation which makes it adequate for long time simulations.

4.5 T T T T T T
3 . 7 = Ay
. ) s \ S N
B v A [ i [EAY

abty i AR [— Potential
| S Kinetic
| b I I Lo {| ——  Total Energy

10

Figure n°28: Evolution of the energy

The momentum is not constant but the average level of linear
momentum and angular momentum of the plate respect to the origin in each
period (T = 4.7328) does not decay or increase.

Momemtum
N

-2

Linear Mom
——  Angular Mom

0 1 2 3 4 5 6 7 8 9 10

Figure n°29: Evolution of the momentum
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Even for a not very fine mesh, the result is quite accurate. The error of
the peak displacement error is approximately +6% and the period elongation
error was also around +3% (Fig. 30). The distribution of displacements was
the expected one (Fig. 31).

x 10
0 . . ; - - ' ' ' '
-0.5+ 1
. 4l '.\ / 4
£ J \ !
£
[0}
(]
K
@
A -1.5¢ ]
-2 i \\\’/, \‘\_// 1
——  Numerical
......... Analytical
-2.5 | | | 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10

Figure n° 30° Evolution of the horizontal displacement of
the bottom right corner

4

Blue: minimum horizontal displ = - 2e-3 Blue: minimum vertical displacement =0
Red: maximum horizontal displ =0 Red: maximum vertical displacement = 2e-3

Figure n° 31 - Distribution of displacement at time = 2.3664 ( % cycle)
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7.5. Buckling of a beam

This example shows the effect of the Poisson modulus. A bar is axially

loaded only on half of the head with a uniform horizontal pressure
Fo=10.01.

Fo

— THR

H/2
A
A L A
Figure n° 32 Sketch of the problem
Length L 10.0
ar Height h 1
3l Young E 1
| Density p 1
Element | Linear
! Triang 2D
0 Nodes 126
AL Ax 0.186
At 0.01
i Courant | 0.11<1
S Peclet 0

0 1 2 3 4 5 6 7 8 9 10

Figure n° 33’ Original geometry

Figure n° 34° Pressure on a buckling beam at different moments
Compressible material Nearly incompressible material

v=0.2 v=0.45
I -0.0326 I -0.04%
5 I -0.0258 5 N 0.041
N -0.0191 I -0.0325
4 -0.0191 4 0.024
-0.0124 -0.024
3 -0.00569 3 -0.0155
) 0.00103 ) -0.00696
0.00775 0.00156
0.0145 o 0.0101
1 1
< ‘J B 00212 / B 00186
0 P N / 0 /
-1 -1
-2 -2
-3 -3
-4 -4
0 2 4 6 8 0 2 4 6 8
Time=25
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5F I -0.0576 I -0.0209
I 0.044 5 I -0.00595

41 N -0.0304 I 0.00898
-0.0168 4 0.0239

3l -0.0168 0.0389
-0.00314 3 0.0538

0.0105 ’ 0.0538

2r 0.0241 2 0.0687
0.0377 0.0837

I 00513 I 0.0986

Time=50

The Figure n° 34 shows that there is no volumetric locking when using
nearly incompressible materials. It is well known that simple triangles with
the classic displacement formulation exhibit a locking effect and the
structures are much stiffer.

7.6. Optimum viscosity

7.6.1. 1-D bar problem

For an axially loaded bar, the peaks of the kinetic energy were
represented for different viscosities in order to determine an optimum Peclet
number. When the artificial damping is increased, the kinetic energy is
dissipated in a few steps but the allowed time step becomes smaller.

The data of the problem are L=10m, E=1, Poisson=0.4, load F¢=0.1. A
discretization of 30 two—node elements was chosen to plot the Figure n°® 36.

Fo
- IH

-+
b

AV L AV
Figure n° 35° Sketch of the problem

A

If we use a time step close to the limit of stability a good estimation of the
viscous parameters is by using the non-dimensional parameter « in (7.5)
that was fully described in the Chapter n° 5.

Ah
Ays = —= Mys = ot (7.5)
C C
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Log(K/KO)
)

K1
K2
K3
K4
K5
K6
K7

-20 L
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100

150 200 250 300

Time

350 400

Figure n° 36 Dissipation of kinetic energy for different viscosities in 1-D

The variation of the kinetic energy fits well a typical exponential

decrease in time.

Case Peclet Time to At max
10% KO
1 7.2 - 1.2e-1
2 3.5 351 1.1e-1
3 2.3 246 9.4e-2
4 1.2 142 6.7e-2
5 1.0 114 5.9e-2
6 0.7 77.3 4.5e-2
7 0.4 49.2 2.8e-2
2200
e L Steps = 1048.1 Pe? - 1204.1 Pe + 2065.4
" R? = 0.9902
2 2000 |
g
(/]
1900 -
S
2 1800 |
c
S 1700 |
1600 -
1500 ‘ ‘ ‘ ‘ ‘ :
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Peclet

Figure n° 37° Optimum Peclet number for the 1-D problem
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The optimum Peclet number that minimizes the number of required
steps is around Pe=0.57 (Fig. 37). The Figure n° 38 represents the effect of
the number of elements in the dissipation for a=1.75, which is close to the
optimum parameter. For the same Peclet number the dissipation is more
effective in coarse meshes. In very fine meshes the viscosity is less
necessary and can be neglected. It has to be noted that for all the chosen
Peclet numbers, the formulation remains variationally consistent.

10k

Log(K/KOQ)

15k

10 el
20 el
30el
40 el

20+

0 50 100 150 200 250 300 350 400
Time

Figure n° 38 Influence of mesh size in the dissipation

0 L L L L L L L
0 50 100 150 200 250 300 350 400

Figure n° 39° Evolution of displacement in the head of the bar. 10 elements
and Pe=0.57.
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7.6.2. 2-D bar problem

The same problem previously described was modelled with constant
strain linear triangles.

5l Length L 10
Heigth h 1

2 Young E 1

1l Poisson v 0.4
Density p 1

o Element | Linear

b Triang 2D

| Nodes 22
Ax J2/2

-3F

0 2 4 6 8 10
Figure n°40: Original geometry

The model was run using several artificial viscosities (Fig. 41).

Log(K/KO0)

-12

| | | |
0 100 200 300 400 500
Time

Figure n°41° Dissipation of kinetic energy for different viscosities in 2-D
The oscillations at the end of the dissipation lines of the graph are

probably due to the inaccuracy comparing the peaks of energy when they
are very small.
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Case Peclet Time to 1% At max
KO

1 1 337.8 0.20
2 0.875 298.2 0.18
3 0.75 258.3 0.16
4 0.625 216.6 0.14
5 0.5 174.6 0.11
6 0.4 139.9 9.3e-2
7 0.3 105.0 7.1e-2
8 0.2 69.98 4.8e-2
9 0.15 53.00 3.6e-2
10 0.1 35.50 2.4e-2
11 0.085 30.30 2.0e-2

1750

1700 1 Steps = 629.82 Pe? - 228.42 Pe + 1490.6

2 °
R?=0.9742

1650 - °
n il °
§ 1600 .
»n 1550 -

1500 - J

1450 *

1400 \ \

0 Peclet 0.5 1

Figure n°42° Optimum Peclet number for the 2-D problem

So, the Peclet number that optimizes the number of required steps is
approximately Pe=0.18. Comparing to 1-D, the ideal viscosity in two-
dimensional problems seems to be higher.

3
x 10

Entropy

0 100 200 300 400 500
Time

Figure n°43° Evolution of the entropy—like energy variable
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For o = 5.5, close to the optimum parameter, the results are shown in the
Figures 43, 44 and 45. The entropy—like energy variable and the internal
energy (Fig. 43 and 44) stay constant after the main dissipation of the
kinetic part.

0.02

0.018 | i
T Potential

| — ~Kinetic i
“ Total Energy
0.014}) | 1

0.016 - |

0.012¢) | |

Energy
o
=

0.0081 | .

0.006 J‘l 8
I

00041 1

0.002 1

ot |V B D
0 100 200 300 400 500
Time

Figure n°44- Evolution of the energy

After a couple of oscillation cycles the kinetic component of the energy
has been reduced by the viscous dissipation and the static displacement is
obtained. Assuming small deformations the analytical static displacement
can be calculated like this

Oy = Fl T 0.4666 ...

STAT (:ﬂ+KjA (/14—2/1)14

0.7

0.6 J

0.5

0.4

0.3

0.2

0.1

0

1 1 1 1
0 100 200 300 400 500

Figure n°45° Evolution of the displacement in the head of the bar
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The numerical results, Fig. 39 and Fig. 45, basically coincide with the

analytical estimation.

7.17.

Bending of an infinite rectangular plate

Figure n°46: Skecth of the problem

An infinite simply supported plate is uniformly loaded under plane strain
conditions. The boundary conditions are:

- Lateral faces: only horizontal displacements are permitted.

- Bottom face: only vertical displacements are permitted.

- Top face: uniform load g applied.

The objective of this example is to prove that the method can be valid in

both dynamic and stationary bending dominated situations.

Figure n°47: Original geometry

Load q 5e—6
Length L 10
Height h 1
Young E 1
Poisson v 0.4
Density p 1
Element | Linear
Triang 2D
Nodes 63
Ax 0.35
At 5e—3
Courant | 0.021<0.086
Peclet 0.17
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The energy is stabilized after four or five cycles (Fig. 48 and 49) and the
velocity goes to zero (Fig. 50). The solution obtained with the viscous two—
step TG seems to be more flexible and a bit more accurate than the classical
FEM formulation for the same mesh (Fig. 51).

1.8 T T T T T T T T

14} 1

12 E

Entropy

0.2} E

0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
Time

Figure n°48- Evolution of entropy—like energy variable

1 T T T T T T T T

ool | S— Potential b
- Kinetic
——  Total Energy

0 i NN NN e ! ! L ! |
0 100 200 300 400 500 600 700 800 900
Time

Figure n° 49 Evolution of energy

Furthermore, it is important that the deflection is not underestimated.
As a consequence, the natural period of vibration is lower.
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4 T T T T T T T T

——  Linear
—— Angular

Momentum

0 100 200 300 400 500 600 700 800 900
Time
Figure n° 50° Evolution of momentum

The following chart summarizes the static results of the Figure n° 51.

Method Deflection
Viscous TG 80 elem | 2.101e-3
FEM 80 elements 1.397e-3
FEM 10000 elem 1.818e-3

0 T T T T T T T T

——  Viscous TG
05 —— Undamped TG T
——————————— Classic Triangles
,,,,,,,,,,, Very Fine Mesh

f _
I A

N AVAY, _

25 h

Displacement

3t i

35} 4

s ]

-4.5

0 100 200 300 400 500 600 700 800 900
Time
Figure n°51° Evolution of displacement

The theorical dynamic amplification factor can be obtained using the

Duhamel integral (7.6). For linear to constant loads the maximum DAF is
given by (7.7).
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DAF:L:

STAT

sino(t —7)dr (7.6)

o t—

- sin(at, /2)

DAy = wt, /2
0

(7.7)

If the application time 7y is small enough, then DAFysx =2. In our
problem we have chosen Zyp = 0.01. The numerical maximum DAF was only
2.65% lower than the theoretic value.

4.090e -3
DAF, =———"=1947=2 7.8
M2 101e—-3 (7.8)
7.8. Flexible foundation

A uniform load ¢ is applied linearly in to = 0.01 units of time between
X;=0.5 and X;=1.0; the medium is symmetric around the edge X;=1 and is
supported by the sides X;=0 and X2=0;

L2 , L= .
1 1

> =

X, q
/ VL -
e (E
i (E
) (E
o <K L
i (B
i (E
i G
%@%@a@@a/ﬁjf*

Figure n°52° Sketch of the problem

The main aim of this case is to demonstrate that the proposed scheme
can give safe dynamic and static stresses for the design of foundations and
structures. Entropy—like energy and internal energy are stable after two
cycles of oscillation (Fig. 54 and 55), the momentum tends to zero because of
the dissipation of the kinetic term (Fig. 56) and the steady state is achieved
quickly.
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Figure n° 54 Evolution of entropy like energy variable
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Figure n° 55 Evolution of energy
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Figure n°56: Evolution of momentum

10

The static results of the Figure n° 57 are summed up in the following

table.

Method Deflection
Viscous TG 128 elem | 2.628e-3
FEM 128 elements 2.586e-3
FEM 6800 elements | 2.608e-3
x 10°
0 T T T T T T T
——  Viscous TG
0.5 —  Undamped TG T
--------- Classic Triangles
-t e Very Fine mesh E
4.5h .
e -2r ]
£
§ 250 (N .
£ o -
_35 - 4
4t i
45} .
5 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time

Figure n° 57 Evolution of displacement

40
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-0.000843 -0.00184
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-0.000216 -0.000606
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Figure n°58.1° Vertical displacement Figure n°58.2: Vertical Cauchy
Stress Y
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Figure n°58.3° Horizontal Cauchy Figure n°58.4° Tangent Cauchy
Stress Stress XY

The distribution of static displacements and stresses shown in Figures n°
58 coincides with the classical FEM solution. The normal stresses showed
little errors (Fig. 60 and 61). The highest errors were obtained in the shear
under the border of the foundation (Fig. 59). The border of the foundation is
a sensitive region and mesh adaptation would be required to obtain more
accurate result.
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Figure n°59: Distribution of shear stress under the border of the foundation

0.1

0.2

0.3

0.4

0.5

Depth

0.6

0.7

0.8 T

- - -Very Fine Mesh

——Classic Triangles
—Viscous TG

0.9

1

/

-4.5E-03

-4.0E-03 -3.5E-03 -3.0E-03 -2.5E-03 -2.0E-03
Normal Cauchy Stress X

-1.5E-03 -1.0E-03 -5.0E-04 0.0E+00

Figure n° 60- Distribution of normal horizontal stress under the edge of
symmetry the foundation

The static stresses calculated with the two—step Taylor Galerkin (Fig.59,
60 and 61) are better and more flexible (this is safer) than those obtained
with the classic static formulation for the same mesh.
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Figure n°61- Distribution of normal vertical stress under the edge of
symmetry the foundation

The dynamic amplification factor is just 8% smaller than the theoretic

one.

DAF

MAX

4817e-3
2.628¢—3

1.833 (7.9)
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Chapter 8

Conclusions

This work described the basis of a fractional step algorithm (the two—step
Taylor—Galerkin) applied to a formulation in terms of the linear momentum
and the first Piola—Kirchhoff stresses. It pretends to be an alternative to the
classical formulation for special elastodynamic problems that require a
specific treatment. The method conserves exactly linear and angular
momentum. Moreover, the method exhibits an excellent energy conservation
that makes it appropriate for long time integrations.

Good results were obtained in terms of accuracy and computational
performance for all the examples included in this work. It is faster and
simpler to implement than other one—step schemes. Here we have shown
with simple cases that in addition to these advantages, the two—step
Taylor— Galerkin was efficient in bending dominated situations, where it
performs better than common displacement formulations. Linear triangles
can be used without locking effect in nearly incompressible materials.

The use of an adequate amount of artificial viscosity avoids the
corruption of the solution due to the high frequencies. Steady state can be
achieved successfully with the viscous formulation.

Clearly, further work is required. Future research directions should
include the extension of the numerical method to other type of elements.
The algorithm must be tested in more complicated problems, where severe
mesh distortions are encountered. A mesh adaptation criteria based on an
error—estimator would be required to make the scheme more effective.
Finally, plastic and viscoplastic materials with large deformations need to
be thoroughly studied.
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Appendix: Design and
Implementation of the Code

I. Algorithm

The design of a program to compute the two—step Taylor — Galerkin
algorithm presents the following structure:

1st) Read input file.
2nd) Tnitialize the variables and state the Initial Conditions.

3rd) Create the consistent mass matrix Mg for every element
M, =[ N.N,dQ )

- Assemble the global matrix.

- Renumber the nodes if necessary to reduce the bandwidth (only for non—
lumped matrices)

- Store the matrix as a banded matrix (as an array if a lumped matrix is
used).

4th) FOR each TIME STEP.
4.1) Prediction step
FOR every ELEMENT predict the unknowns,

el 03"
s o I o 2 ™

2 | ax, x|

Where

¢ =1 : Number of nodes per element
1 =1 : Number of unknowns

j =1 : Number of dimensions
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and calculate the fluxes of the predicted unknowns,

[S/Z} :SHU["U} ] (1T

The displacement could be also calculated here provided that xp+1=Xn+vn+1/2
At.

4.2) Create the right hand side term.

For every local node of the element calculate the internal flux contribution.

e At[{‘" 2} a; )

J

Assemble in the global right hand side.

END of FOR each ELEMENT.

FOR each SIDE on the boundary

- Modify the normal flux depending on the Boundary Type. This is, impose

weak Boundary Conditions.
- Add the external contribution.

(1] =[r""] -aef {S} N,N,dr W)

a, ¢ =1 : Number of nodes per element

- Assemble in the global right hand side vector.

END of FOR each SIDE.

- Impose strong Boundary Conditions on the global right hand side array.

4.3) Solve the lineal system with a Jacobi iterative method if a non—lumped
matrix was used.

MoU = f (VD)

- Create lumped diagonal mass matrix and iterate (about 3 to 6 iterations).

SU =M, f (VID)
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SU™ =sU" + M, (f —MsU™) (VIID)

Where [ML ]ii = ZMik

k
In the proposed code the lumped matrix is used therefore the system is fully
explicit.

4.4) Correct the unknowns and get the fluxes.

] =lur] +leu ], (IX)

a =1 : Number of total nodes of the model

') =3 ]) <X>
END of FOR each TIME STEP

5th) Write output file and plot results.

As it was pointed previously, although the element consistent mass
matrix offers more accuracy than the lumped one, they have the same
asymptotic order and the use of the lumped matrix means less
computational cost.

The most important results are often limited to small regions of the
calculation domain. It is an efficient idea to use unstructured grids to reduce
the number of elements and grid points. As such calculations are very time
consuming and inherently parallel the use of multiprocessor systems for this
task seems to be a very natural idea [14].

II. Diagram of procedures and functions

The Figure n° 62 shows the functional structure of the code described in
the previous section. Input and output procedures were adapted from the
codes of Chandruplata & Belegundu [1].
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Input File —> Read_Data
Plot_2d_Mesh
Initialize
Global M_Lumped
l Local
Geometry Flux_Unk < Piola
l Unk_Predict « Div_Flux
Flux_Vis_Unk
Global RHS <—_’ Internal RHS
| Modify_Flux 4 Traction
> External RHS
Main: Calculation of Assemble
unknowns and other variables. Modify Wall BC
New Preparation for output — B
time step l Local
‘r Error Rot E
Mesh_Error — Grad Lin Mom
— . = -
| Div_P
< v Entropy_ E
Output File ’ WriteData
A
Screen < Output

Figure n° 62 Diagram of procedures and functions

ITIT. Truss 1-D code

Main.m

clear all;

clc;

—————= Head of the program
disp('***************************************'),-

disp('* PROGRAM for LAGRANGIAN DYNAMICS *');

disp('* wusing the 2-STEP TAYLOR-GALERKIN *');

disp('* and 1-D 2-Nodes Truss elements *');

disp('* X.M.Carreira: xmcarreiral@yahoo.com *');
disp(l***************************************l);

S—————- Reading data of input/output files from keyboard

disp(blanks (1))

FILEl = input('Input Data File Name ','s');
LINP = fopen(FILEl,'r'");
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FILE2 = input ('Output Data File Name ', 's');
LOUT fopen (FILE2, 'w'");

[TITLE,NN,NE, NQ, NBC,NBE, NB, BT, NIC,NV, IC, ...
Mat Prop,dx,dt,NT,PM,DP, Int,WF]=Read Data (LINP);

F=————— Initializations
[UG]=Initialize (NN,NIC,NV,IC);
Dens=Mat Prop(3);

Time=0.0;

Counter=0;

Integral UG=zeros (NQ,1);
Delta UG=zeros(NQ,1);

G ——— Reading Wall BC
[NU]=Wall BC(NBC,NB,BT);
F—————— Creating Mumped Mass Matrix
[M Lumped] =Global M Lumped (NQ,dx) ;
F————— General loop
for TStep=1:NT

[RHS]=Global RHS (NQ,NE,NBE,NB,BT,NU, ...
Mat Prop,UG,Time,dx,dt);

for dof=1:NQ
Delta_UG(dof,l):RHS(dof,l)/M_Lumped(dof,l);
end;
UG=UG+Delta UG;

Integral UG=Integral UG+dt*UG;

Time=TStep*dt;
F————- Plot and output

if or((mod(TStep,PM)==0),TStep==1)
F—————= Display message of evolution of running

Completed=100*TStep/NT;

disp (sprintf ('Percentage completed = %d', Completed));

G—————= Writing output file

if (WF==1) % If WEF=1 then write in file
[Done]=Write Data (LOUT,NN, Time, UG);

end; % End of writing output file

Counter=Counter+1;
T (Counter)=Time;
if (Int==1) % Integral of the result
for dof=1:NQ
Value (Counter,dof)=Integral UG (dof);
end;
elseif (Int==0) % No integral, direct result
for dof=1:NQ
Value (Counter,dof)=UG (dof) ;
end;
end; % End of internal if, selection of integral or not

K=0;

for Node=1:NN

dof=2* (Node-1)+1;

K=K+0.5*M Lumped (dof) * (UG (dof) *2) /Dens;
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end;
Kinetic (Counter) =K;

o)

end; % End of external if ... write or plot every PM steps

end; % End of for general loop TStep=1:NT
fclose (LOUT) ;

disp ('Running has finished');

% Plot the stored results

plot (T,Kinetic);

Key=1;
while (Key~=0)

Key=input ('l to plot another node, 0 to exit '");
if (Key==1)

Node=input ('enter another node to plot ');
Dof=input ('enter dof to be plotted (1 to 2) '");
DP= (Node-1) *2+Dof;

plot (T,Value(:,DP));

end; % End of if

end; % End of while

% End of Main program

Read Data.m

S function Read Data --------——--——-———-————————

function [TITLE,NN,NE,NQ,NBC,NBE,NB,BT,NIC,NV,IC,...
Mat Prop,dx,dt,NT,PM,DP, Int,WF]=Read Data (LINP);

% SPECIFICATION: This procedure serves to read the input data from the
% input file.

% STRUCTURE OF THE INPUT FILE:

Fmmm Beggining of generic input file
% TITLE OF PROBLEM

% Write here your title

% Length NE

3 X x

% NBC NIC

% X x

% Node# BT

% x b4

% X x

% Node# DOF# Value IC

s 4 1 0.01

% Node# DOF#  Value IC

S X X X ---- NIC lines, 3 entries
% Young Poisson Dens

% X X X ---- 1 lines, 3 entries
% dt NT

$ X X -——— 1 line, 2 entries%
% Node# DOF# PlotMod Int WFile

% X X X X X ---- 1 line, 4 entries
F—————————————= End of generic input file

% DESCRIPTION OF MAIN VARIABLES:

% NN: Number of nodes
% NE: Number of elements
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% NQ: Total number of degrees of freedom = 6 dof x NN
% NBC: Number of BC (boundary conditions)
% NB: Nodes on the boundary
% NB1,NB2: Nodes on the Boundary
% BT: Boundary type
% BT= 0 : Hinge p=0
% BT= 1 : Free boundary No traction
% BT= 10 : Load
$ NIC: Number of IC (this is initial linear momentum in our case)
S NV (I): Number of the node of the initial condition n®° I
% IC(I): Value of the initial condition n® I
% Young, Poisson, Dens: Material properties
% dt: Time step
% NT: Number of time steps
% PM: Plot results every PM number of steps
% DP: Degree of freedom to be plotted
% Int: Integration of plot variable (0 -> No, 1 -> Yes)
$ WE: Write file (0 -> No, 1 -> Yes)
% Reading data from input file
————= General data -----
DUMMY = fgets (LINP);
TITLE = fgets (LINP);
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP)) ;
[L, NE] = deal (TMP(1),TMP(2));
NN = NE+1;
NQ = 2*NN;
dx= L/NE;
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP));
[NBC, NIC]= deal (TMP(1l),TMP(2));
G———== Boundaries -----
DUMMY = fgets (LINP) ;
for I=1:NBC
TMP = str2num(fgets (LINP)) ;
[NBE(I),NB(I), BT(I)] = deal(TMP(1l), TMP(2), TMP(3));
end
S————= Component Dofs for IC -----
DUMMY = fgets (LINP);
for I=1:NIC
TMP = str2num(fgets (LINP)) ;
[Node (I),Dof (I),IC(I)]=deal (TMP(1),TMP(2), TMP(3));
NV (I)=2* (Node (I)-1)+Dof (I);
end
S————= Material Properties -----
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP)) ;
[Young, Poisson, Dens, Lambda, Mu] = deal (TMP (1), TMP(2),TMP (3),TMP (4),TMP(5)) ;

Mat Prop (1)=Young;

Mat Prop(2)=Poisson;
Mat Prop (3)
)
)

=Dens;
Mat Prop (4)=Lambda;
Mat Prop (5)=Mu;
G————— Time Parameters -----

DUMMY = fgets (LINP) ;
TMP = str2num(fgets (LINP)) ;
[dt,NT] = deal (TMP(1),TMP(2));
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o)

s————— Plot Parameters -----
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP));

[NodePlot,DofPlot, PM, Int,WF] = deal (TMP(1),TMP(2),TMP(3),TMP (4),TMP(5));

DP= (NodePlot-1) *2+DofPlot;

o)

% End of reading input file
fclose (LINP) ;

)

end % End of function Read Data

Initialize.m

g m e function Initialize

function [UG]=Initialize(NN,NIC,NV,IC);

% SPECIFICATION: This function serves to create a initial UG with

corresponding IC

% NIC: Number of IC (this is initial linear momentum in our case)
% NN: Number of nodes
% NV(I): Number of the node of the initial condition n®° I

oe

IC(I): Value of the initial condition n©° I

F———— Start with F=I (no deformation),
% p=0 (no velocities applied)
NQ=2*NN;

UG=zeros (NQ, 1) ;
for Node=1:NN

Inc=2* (Node-1);

% UG(1l+Inc,1)=0.0; % pl=0
UG(2+Inc,1)=1.0; % Fll=1

end;

G———== Modify for Initial Conditions -----

for I = 1:NIC
Eq = NV(I);
UG(Eqg,1) = IC(I);
end;

o)

end; % End of function Initialize

Wall_BC.m

m——m—m function Wall BC —--------————-—-——————————————

function [NU]=Wall BC(NBC,NB,BT);

% SPECIFICATION: This functions serves for putting a penalty where the BC are

=

ocated

oe

oe

NBC: Number of BC (boundary conditions)

oe

oe

BC(I): Value of the boundary condition n°® I
BT: Boundary type (0 -> Wall, 1 -> FreeX,

oe

10

NU(I): Number of the dof of the boundary condition n® I

-> Load)
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oe

NB: First node of the side of the element on the boundary
G————- Modify for Boundary Conditions -----
End=0;

for I = 1:NBC

if (BT (I)==0) % 1f wall condition then

% Node of the side

Dof Start=(NB(I)-1)*2+1;

Start = End+1;
End = Start;
NU (Start:End) = [ Dof Start ];

end;
end;

end % End of function Wall BC

Global_M_Lumped.m

e function Global M Lumped —--—-—————-————————————————

function [M Lumped]=Global M Lumped (NQ,dx);

oe

oe

SPECIFICATION: This function serves to create the lumped mass matrix

oe

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% NQ: Total number of degrees of freedom
% NOC: Number of Components
% dx: Length of the element

oe

M Lumped: Global lumped mass matrix

————— Global Stiffness Matrix

o

M Lumped = ones(NQ,1);

M Lumped(1,1) = 0.5;
M Lumped(2,1) = 0.5;
M Lumped(NQ-1,1) = 0.5;
M Lumped(NQ ,1) = 0.5;

M Lumped = dx*M Lumped;

end; % End of function Global M Lumped

Global_RHS.m

e m e function Global RHS —-------———-———-————————————

function [RHS]=Global RHS (NQ,NE,NBE,NB,BT,NU, ...
Mat Prop, UG, Time,dx,dt);

oe

oe

SPECIFICATION: This procedure serves to create the system

oe

oe

DESCRIPTION OF MAIN VARIABLES:

oe
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NN: Number of nodes
NE: Number of elements
RHS: Right hand side vector in global system
RHSE: Contribution to the right hand side vector of one element
UE: Unknowns=transpose[ pl F1 | p2 F2 ] 4x1
UG: Unknowns in global coordinates
dt: Step of time
B: Bij is the partial of Ni respect to Xj (Voigt matrix)
BT: Boundary type of the element
BT= 0 Hinge, p=0
BT= 1 Free boundary No traction

BT= 10 Load on the boundary
DJ: Determinant of the Jacobian of the transformation

Initializing global RHS

RHS = zeros (NQ,1);
dUG = zeros (NQ,1);

oe

---- Geometric properties of the element

B(l,1)=-1.0/dx;
B(2,1)= 1.0/dx;

o
°

---- Material properties

Young = Mat Prop(1l);
Poisson = Mat Prop(2);
Dens = Mat Prop(3);
Lambda Vis = Mat Prop(4);
Mu Vis = Mat Prop(5);

for N = 1:NE

o o

oe

Nodel=N;
Node2=N+1;

% Getting local element unknowns from global unknowns...
[UE] = Local (UG,Nodel,Node?2) ;

% Calculation of flux at time n
[FluxE] = Flux Unk (Young,Poisson, Dens,UE) ;

% Prediction of new local element unknowns at time n+1/2
[dUE] = Unk Predict (FluxE,B,dt);
UE=UE+dUE;

% Prediction of new element flux at time n+1/2
[FluxE] = Flux Unk(Young, Poisson, Dens, UE) ;

% Viscous flux

[FluxE Vis]=Flux Vis Unk(Lambda Vis,Mu Vis, Dens,UE,B);
% Total flux without viscosity

FluxE=FluxE-FluxE Vis;

% Getting internal contribution of the element to RHS
[RHSE]=Internal RHS (FluxE,B,dx,dt);
% Adding external flux if necessary
for side = 1l:length (NBE)
if (N==NBE (side))
if (Nodel==NB (side))
Normal= -1.0;
FluxN = FluxE(1:2,1)*Normal;
FluxN = Modify_Flux(FluxN,BT(side),Time);
External=-0.5*dt*F1luxN;
Another possible way to model free boundary is
External (1,1) = dUE(1,1) *dx;
External (2,1) = 0;

Traction
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RHSE (1:2,1) = RHSE(1:2,1)+External;
end;
if (Node2==NB (side))
Normal= 1.0;
FluxN = FluxE(3:4,1)*Normal;
FluxN = Modify Flux (FluxN,BT (side),Time);
External=-0.5*dt*F1luxN;

% Another possible way to model free boundary is the very clever way of
Obey Hassan
% External(1,1) = 0;
% External (2,1) = dUE (4,1) *dx;
RHSE (3:4,1) = RHSE (3:4,1)+External;

end;

end;

end;

% Assembling
[RHS]=Assemble (RHS,Nodel,Node2, RHSE) ;

end; % End of for N = 1:NE (2nd loop)
% Modify RHS for Wall conditions (Strong form)
[RHS]=Modify Wall BC (RHS,NU) ;

end; % End of function Global RHS

o function Local —--—----—-—————————————————-

function [UE] = Local (UG,Nodel,Node2) ;

oe

oe

SPECIFICATION: This function serves to obtain
the local unknowns from global coordinates

oe oo

oe

UG: Global vector
UE: Local vector for the element

oe

UE=zeros (4,1);

% Node 1

Startl = 2* (Nodel-1)+1;

Endl = Startl+1;

UE(1:2,1) = UG(Startl:Endl,1);
% Node 2

Start2 = 2* (Node2-1)+1;

End2 = Start2+1;

UE(3:4,1) = UG(Start2:End2,1);

end; % End of function Local

Fm—————————— function Modify Flux --—--—---——-——----

o

°

function [Flux] = Modify Flux(Flux,BT,Time)

oe

SPECIFICATION: This function modifies the Flux of the Element
FluxE depending on the Boundary Type BTE

o o

oe

if (BT==0)
% px=0, py=0
Flux(2,1)=0.0;
elseif (BT==1)
% Free condition, traction=P*N=0
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Flux(1,1)=0.0;
elseif (BT==10)
% Free condition, traction
Flux(l,1)=-1.0*Traction (Time) ;
end;

end; % End of function Modify Flux

g function Internal RHS ---------------—-——-————————

function [RHSE] = Internal RHS(FluxE,B,dx,dt);

oe

oe

SPECIFICATION: This function serves to calculate the contribution
to RHS of each element considering the internal
flux and external loss through the boundary.

oe o

oe

Fluxl = FluxE(1:2,1);
Flux?2 FluxE (3:4,1);

Average_Flux zeros (2,1);
Average Flux = (Fluxl+Flux2)/2;

Int Rhs=zeros(4,1);

Int Rhs(1:2,1) = dt*Average Flux(1:2,1)*B(1,1)*dx; % Node 1
Int_Rhs(3:4,1) = dt*Average_Flux(l:Z,l)*B(2,1)*dx; $ Node 2
RHSE=Int Rhs;

end % End of function Global RHSE

function [VG] = Assemble (VG,Nodel,Node2,VE)

oe

oe

SPECIFICATION: This function adds the contribution
of elemental VE to the global VG

oe

oe

% Node 1
Startl = 2* (Nodel-1)+1;
Endl = Startl+l;

VG (Startl:Endl,1) = VG(Startl:Endl,1)+VE(1:2,1);

% Node 2

Start2 = 2* (Node2-1)+1;

End2 = Start2+1;

VG (Start2:End2,1) = VG(Start2:End2,1)+VE(3:4,1);

end; % End of function Assemble

g function Modify RHS Wall BC ---—-----—-—---

function [VG] = Modify Wall BC(VG,NU);

oe

SPECIFICATION: This function serves to modify global VG vector
for the Wall Boundary Conditions in the nodes
given by NU

oe

oe

for I = 1l:length (NU)
N = NU(I);
VG(N) = 0.0;
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end

end % End of function Modify RHS Wall BC

Unk_ Predict.m

function [Inc Unk Pred]=Unk Predict (Flux,B,dt);

S ——mm—m—m e m function Unk Predict --------------------——————

% SPECIFICATION: This function serves to predict the unknowns per element at

the time step n+1/2

% from the Flux given at time n (at element level), this is,
% the Taylor prediction of the half-step

% DESCRIPTION OF MAIN VARIABLES:

% Flux: -1l*transpose[ Pl vl | P2 v2 ] 4x1
% Unknowns: transpose[ pl F1 | p2 F2 ] 4x1
% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% dt: Step of time
Inc Node Pred = zeros(2,1);
Inc Unk Pred = zeros(4,1);
% PREDICTOR STEP
Inc Node Pred = -0.5*dt*Div_Flux(Flux,B);

Inc Unk Pred(1l:2,1) = Inc Node Pred;
Inc Unk Pred(3:4,1) Inc Node Pred;

end % End of Unk Predict

o)
I

°

function [DFlux]=Div_ Flux (FluxE,B);

oe

oe

SPECIFICATION: This function serves to calculate the divergence
of the Flux of the element

oe o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

% Flux: The elemental flux is -1l*transpose[ Pl vl | P2 v2 ] 4x1,
% but it can be any matrix with size 18x2

% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)

% OUTPUT

% DivFlux: Divergence of Flux

DFlux=zeros (2,1);
DFlux=(FluxE(1:2,1)*B(1,1)+FluxE(3:4,1)*B(2,1));

end; % End of Div Flux function

Flux Unk.m

Fm— function Div Flux —----————-——-————————— - ——————
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S ——m——m—m function Flux Unk ---------——--—-————-———-———————

function [FluxE]=Flux Unk (Young, Poisson, Dens,UE);

o)

o\

oe

SPECIFICATION: This function serves to calculate the Flux from the
Element Unknowns at the same time step for one element

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

% Young: Young elastic parameter

% Poisson: Poisson elastic parameter

% Dens: Density

% UE: transpose|[ pl F1 | p2 F2 ] 4x1

% OUTPUT

$ FluxE: -l*transpose[ Pl vl | P2 v2 ] 4x1

oe

oe

Other variables:
F: Deformation gradient tensor

oe

FluxE=zeros (4,1);

UN=UE (1:2,1); $ Node 1
FluxE(1:2,1)=Nodal Flux (UN,Young, Poisson, Dens) ;

UN=UE (3:4,1); $ Node 2
FluxE (3:4,1)=Nodal Flux (UN, Young, Poisson, Dens) ;

end % End of function Flux Unk;

o)

F——————= function Nodal Flux -----—--------

function [FluxN]=Nodal Flux (UN,Young,Poisson,Dens);
% SPECIFICATION: This function serves to obtain the nodal Flux
from the vector of Nodal Unknowns UN

oe

F=UN(2,1);
P=Piola (Young, Poisson,F);

FluxN=zeros (2,1);
FluxN(1,1)=-P;
FluxN(2,1)=-UN(1,1) /Dens;

end; % End of function Nodal Flux

Flux_Vis_Unk.m

S ——mm—m—m function Flux Vis Unk ---------------—-——-—-

function [FluxE Vis]=Flux Vis Unk(Lambda Vis,Mu Vis, Dens,UE,B) ;

oe

oe

SPECIFICATION: This function serves to calculate the viscous Flux from the
Element Unknowns at the same time step for one element

a° oo

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

% Dens: Density

% Mu Vis, Lambda Vis: Viscous parameters

$ UE: transpose[ pl F1 | p2 F2 ] 4x1

% B: matrix with the derivative of the shape functions
% OUTPUT
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oe

FluxE Vis: -1l*transpose[ Plvis 0 | P2vis 0 ] 4x1

oe

oe

Other variables:
F: Deformation gradient tensor

oe

oe

Linear momentum

pl=UE (1,1);
p2=UE (3,1);

o)

% Gradient of linear momentum
[Grad p]=Grad Lin Mom(pl,p2,B);
FluxE Vis=zeros(4,1);

for Node=1:2
Inc=2* (Node-1);
U Nodal=UE ((1+Inc):(2+Inc));
Flux Nodal=zeros(2,1);
Flux Nodal=Nodal Flux (U Nodal,Lambda Vis,Mu Vis,Dens,Grad p);
FluxE Vis ((1l+Inc): (2+Inc),1)=Flux Nodal;
end; % End of for

end % End of function Flux Unk;

o)

S——————= function Nodal Flux -------------

function [FluxN]=Nodal Flux (UN,Lambda Vis,Mu Vis, Dens,Grad p);
% SPECIFICATION: This function serves to obtain the nodal Flux
from the vector of Nodal Unknowns UN

oe

F=UN(2) ;
P Vis=Piola Vis(Lambda Vis,Mu Vis,Dens,F,Grad p);

FluxN=zeros (2,1);
FluxN(1,1)=+1.0*P Vis;

end; % End of procedure Put FluxE Vis

F——————= function Grad Lin Mom ---—--—=-—-——-—————---—

function [Grad p]=Grad Lin Mom(pl,p2,B);

o)

o\

oe

SPECIFICATION: This function serves to calculate the gradient
of the vector of Unknowns

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

% pi= linear momentum of node i

s p=[ px ]

% dt: Step of time

% B: Bij is the partial of Ni respect to X (Voigt matrix)
% OUTPUT

% Grad p: Gradient of Unknowns

s | px,x |

Grad p=pl*B(1,1)+p2*B(2,1);

end; % End of Grad Lin Mom function
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Piola.m
e function Piola --—------—————————————————-

function [P]=Piola(Young, Poisson,F);

o\

oe

SPECIFICATION: This function serves to calculate the first Piola
stress tensor in 1D problems

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT:

$ F Deformation gradient tensor

% Young: Young elastic parameter

% Poisson: Poisson elastic parameter

% OUTPUT:

% P: First Piola-Kirchhoff stress tensor

oe

oe

Model=1: Large deformation
Model=2: Small deformation

oe

Model=2;

o)

% Calculation of main elastic parameters
Mu=0.5*Young/ (1+Poisson) ;
Kappa=Young/ (3-6*Poisson) ;

% Calculation of Piola Kirchhoff stress tensor

% Error P=Mu* (F"(-2/3)-(1/3)* (2*F~(-5/3)+F"(1/3)))+Kappa* (F-1);
if (Model==1)

P=(2/3) *Mu* (F~ (-1/3) -F" (=5/3) ) +Kappa* (F-1) ;

elseif (Model==2)

P = ((4/3)*Mu+Kappa) * (F-1) ;

end;

o)

% End of Piola function

Piola_Vis.m
g m function Piola Vis -------------—--—————————-—

function [P _Vis]=Piola Vis(Lambda Vis,Mu Vis, Dens, F,Grad p);

oe

oe

SPECIFICATION: This function serves to calculate the viscous Piola
stress tensor in 1D problems

a° oo

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT:
Lambda Vis, Mu Vis: Viscous parameter

oe

oe

% Grad p: Gradient of linear momentum

%

% OUTPUT:

%

% Pv: Viscous Piola-Kirchhoff stress tensor
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o)

% Viscous constitutive model (for numerical purposes only)
Constant = ((Lambda_Vis+2*Mu_Vis)/Dens);
P Vis = Constant*Grad p*F" (-3);

end; % End of Piola Vis function

Traction.m
g m function Traction -----------—--—-—————-——-———-

function [Stress]=Traction(Time) ;

oe

oe

SPECIFICATION: This function serves to specify the applied
Stress on the boundary sides.

oe

oe

o)

0.1; % Positive means in the directio on the Normal vector
0.5;

Stress_ Max
TO =

% Linear function
f (Time==0)
Stress=0;
elseif and((Time < TO0), (Time > 0))
Stress=Stress Max* (TO- (T0-Time)) /TO;
else
Stress=Stress Max;
end;

-

end; % End of Load function

Output.m

e function Write Data --------"-""""-""-"—"-————"————-
function [Done]=Write Data (LOUT, NN, Time, UG) ;
for I=1:NN

LinMomX (I)=UG(2* (I-1)+1);
EV(I) =UG(2* (I-1)+2)-1;

end

fprintf (LOUT, ' %15.4E\n',Time) ;
fprintf (LOUT, ' Node# LinMomX VolDef\n');
for I = 1:NN
fprintf (LOUT, ' %4d %$15.3E $15.3E\n',I,LinMomx(I),EV(I));
end;
Done=1;
end;
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IV. Triang 2-D code

Main.m

clear all;
clc;

Yoo —— Head of the program

disp('************************************** ;

*')

disp('* PROGRAM for LAGRANGIAN DYNAMICS *1)
disp('* wusing the 2-STEP TAYLOR-GALERKIN '
disp('* and PLANE STRAIN 3-Nodes TRIANGLES *');

)

)

’

’

disp('* X.M.Carreira: xmcarreira@yahoo.com *'
dlSp ( Thkhkhkhkhkkhkkhhkhhkhkhkhhrhkhkkhhkrhhkkhkhkhrhkkhkkhhkrhkhkkhkhrrhkhkhxx?

G—————- Reading data of input/output files from keyboard
disp (blanks (1)) ;

FILEl = input('Input Data File Name ','s');
LINP = fopen(FILEl,'r'");

FILE2 = input ('Output Data File Name ', 's');
LOUT = fopen(FILE2,'w');

[TITLE, NN, NE,NQ, X, NOC, NBC, NBE, NB1,NB2,BT,NIC,NV, IC, ...
Mat Prop,dt,NT, PM,WF]=Read Data (LINP);

G————- Material properties

Young = Mat Prop(1l);

Poisson = Mat Prop(2);

Kappa=Young/ (3-6*Poisson) ;

G=0.5*Young/ (1.0+Poisson); % Shear modulus (also called Mu)
Dens = Mat Prop(3);

————- Plot mesh
[Done] = Plot 2d Mesh (NN, NE, 3,X,NOC) ;

F————- Initializations
[UG]=Initialize (NN,NIC,NV, IC);
Time=0.0;

Counter=0;

E=0;

Velocity=zeros (NN, 2) ;
Displacement=zeros (NN, 2) ;
Delta UG=zeros (NQ,1);
Fm—————— Creating mass matrix
[M Lumped]=Global M Lumped (NQ, X,NOC,NE) ;

Y — Reading Wall BC
[NU]=Wall BC (NBC,NB1,NB2,BT);

R Geometric properties
[DJ,B,Normal, Length,N1,N2] = Geometry (NE,X,NOC,NBC,NBE,NB1,NB2) ;
- General loop

for TStep = 1:NT

[RHS,EP]=Global RHS (DJ,B,Normal, Length,N1,N2,NE, NQ,NOC, NBE,BT,NU, ...

Mat Prop,UG,Time,dt);
for dof=1:NQ
Delta UG (dof,1)=RHS (dof,1)/M Lumped (dof,1);
end;
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UG=UG+Delta UG;
% Velocities
for Node = 1:NN
Start = 6* (Node-1) ;
Velocity (Node,1)=UG(Start+1)/Dens;
Velocity (Node, 2)=UG(Start+2) /Dens;
end;
% Displacements
Displacement (1:NN,1:2)=Displacement (1:NN,1:2)+dt*Velocity (1:NN,1:2);
XD(1:NN,1:2)=X(1:NN,1:2)+Displacement (1:NN,1:2); % Deformed geometry

Time=TStep*dt;

O Preparing for output
if or((mod(TStep, PM)==0), TStep==1)

o)

% Initialization of some variables

K=0; % Kinetic energy
Pot=0; % Potential energy
Lin=zeros(2,1); % Linear momentum
Ang=0; % Angular momentum

o)

% Creating output results
Counter=Counter+1;

T (Counter)=Time;

Displ (1:NN,1:2,Counter) = Displacement;
Vel (1:NN,1:2,Counter) Velocity;

for Node=1:NN
Start = 6* (Node-1);

K=K+0.5* (M _Lumped (Start+1) *UG (Start+1) "2+..
M Lumped(Start+2)*UG(Start+2)A2)/Dens,

Lin(1l,1)=Lin(1,1)+M Lumped(Start+1)*UG(Start+1);
Lin(2,1)=Lin(2,1)+M Lumped (Start+2) *UG(Start+2);

Ang=Ang+ (M_Lumped (Start+1) *UG (Start+1) *XD (Node, 2) —. ..
M Lumped (Start+2) *UG(Start+2) *XD(Node, 1)) ;

F(l,1) = UG(Start+3):;
F(l1,2) = UG(Start+4);
F(2,1) = UG(Start+5);
F(2,2) = UG(Start+6);
J=det (F) ;

Pressure (Node, 1, Counter)=Kappa* (J-1) ;

Almansi Strain=0.5* (ones(2,2)-inv (F*transpose (F))) ;

Strain(Node,1l,Counter) = Almansi Strain(l,1);
Strain(Node, 2,Counter) = Almansi Strain(2,2);
Strain(Node, 3,Counter) = Almansi Strain(1,2);

Cauchy Stress= Piola (Young,Poisson,F) *transpose (F) /det (F) ;

Stress (Node, 1,Counter) = Cauchy Stress(1,1);
Stress (Node, 2,Counter) = Cauchy Stress(2,2);
Stress (Node, 3,Counter) = Cauchy Stress(1,2);
C=transpose (F) *F; % Cauchy-Green deformation tensor

Nodal Area=M Lumped (Start+1);
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% Nodal Potential energy

Pot Vol = 0.5*Nodal Area*Kappa* (J-1)"2;

Pot Dev = O.5*Nodal_Area*G*(JA(—2/3)*(1+trace(C))—3);
Pot=Pot+Pot Vol+Pot Dev;

end; % End of for Node=1:NN

Error Press(1:NN,1,Counter)=EP(1:NN);

F————= Control of mesh errors: Rotational of F, Entropy and Energy
[ErrorRF (Counter),DE] = MeshiError(NOC,NE,UG,B,Young,Poisson);
E=E+DE*dt;

Entropy (Counter)=E;

Kinetic (Counter)=K;

Potential (Counter)=Pot;

Linear Mom(Counter)=sqrt(Lin(1,1)"2+Lin(2,1)"2);
Angular Mom(Counter)=Ang;

S—————= Display message of evolution of running
Completed=100*TStep/NT;

disp (sprintf ('Percentage completed = %d', Completed));

o)

end; % End of external if ... write or plot every PM steps
end; % End of for general loop TStep = 1:NT
S END OF RUNNING. ¢ttt ettt et e ee ittt et e s eeeeeeeseeesesenaeeseseeenennneeesas

if (WF==1) % If WEF=1 then write in file
[Done] = Write Data (LOUT,NN,T,Displ,Vel, ...
Strain,Stress,Pressure,Error_Press);
end; % End of writing output file

clc;

% Plot the average error vs time: evolution of average error
plot (T,ErrorRF);

xlabel ('Time"') ;

ylabel ('Error RotF');

pause=input ('press any key to plot another graphic');

% Plot the average error vs time: evolution of average error
plot (T,Entropy);

xlabel ('Time') ;

ylabel ("Entropy');

pause=input ('press any key to plot another graphic');
Energy=Potential+Kinetic;

% Plot energy

plot (T, Potential,':',T,Kinetic, '--"',T,Energy);

legend ('Potential', 'Kinetic', 'Total Energy');

xlabel ('Time"') ;

ylabel ("Energy');

pause=input ('press any key to plot another graphic');
% Plot linear momentum

plot (T, Linear Mom) ;

xlabel ('Time'") ;

ylabel ('Linear momentum') ;

pause=input ('press any key to plot another graphic');
% Plot angular momentum

plot(T,Angular_Mom);
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xlabel ('Time"') ;
ylabel ("Angular momentum') ;
% Postprocessing data
[Done] = Output (NN,NE,X,NOC,T,Displ,Vel,Strain, ...

Stress, Pressure, Error Press);

% End of Main program

Read Data.m

g m function Read Data ----------—--—--—-——-—-———

function [TITLE, NN, NE,NQ, X,NOC,NBC,NBE,NB1,NB2,BT,NIC,NV, IC, ...
Mat Prop,dt,NT, PM,WF]=Read Data (LINP);

% SPECIFICATION: This procedure serves to read the input data from the
% input file.

% STRUCTURE OF THE INPUT FILE:
Fmmmm Beggining of generic input file

% TITLE OF PROBLEM
% Write here the description of the problem

% NN NE

% X x ---- 1 line, 2 entries

% NBC NIC

% X X ---- 1 line, 2 entries

% Node# X Y

s X X X ---- NN lines, 3 entries
% Elem# N1 N2 N3

% X X X X ---- NE lines, 4 entries
% Elem# Nodel Node2 BT

% x X X X -——--— NBC lines, 4 entries
% Node# DOF# Value IC

s x X X —-—-—- NIC lines, 3 entries
% Young Poisson Dens Lambda Mu

% X X X X X -—---— 1 lines, 5 entries

% dt NT

$ x X -—-—— 1 line, 2 entries$%

% PlotMod WFile

$ X X --—— 1 line, 2 entries
F—————————————= End of generic input file

% DESCRIPTION OF MAIN VARIABLES:

% NN: Number of nodes

% NE: Number of elements

% NQ: Total number of degrees of freedom = 6 dof x NN
% NBC: Number of BC (boundary conditions)

% NB: Nodes on the boundary

% BT: Boundary type

% BT= 0 : Clamped wall px=0, py=0

% BT= -1 : Hinges parallel to X py=0

% BT= -2 : Hinges parallel to Y px=0

% BT= -10 : Movement parallel to X py=0, Pn=0
% BT= -20 : Movement parallel to Y px=0, Pn=0
% BT= 1 : Free boundary Pn=0

% BT= 10 : Load Traction=Pn

% NIC: Number of IC

% NV(I): Number of the node of the initial condition n° I
% IC(I): Value of the initial condition n° I

% NOC: Number of Components
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% X: Coordinates

% Young, Poisson, Dens: Material properties

% dt: Time step

% NT: Number of time steps

% PM: Plot results every PM number of steps

% DP: Degree of freedom to be plotted

% Int: Integration of plot variable (0 -> No, 1 -> Yes)
$ WE: Write file (0 -> No, 1 -> Yes)

% PT: Plot Type (1 -> Lines, 2 -> Filled)

% Reading data from input file

DUMMY = fgets (LINP

’

( );
TITLE = fgets (LINP);
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP))
[NN, NE] = deal (TMP (1), TMP(2))
NQ = 6 * NN;
DUMMY = fgets (LINP);
TMP = str2num(fgets (LINP));
[NBC, NIC]= deal (TMP(1),TMP(2));

o)

©

--—- Coordinates -----
DUMMY = fgets (LINP);
I=1:NN

for

end

jo

°

TMP = str2num(fgets (LINP)) ;
[N, X(N,1:2)]=deal (TMP(1),TMP(2:3));

--- Connectivity -----
DUMMY = fgets (LINP) ;
I=1:NE

for

end

o)

©

DUM
for

end

o)

©

TMP = str2num(fgets (LINP)) ;
[N,NOC(N,1:3)]=deal (TMP(1),TMP(2:4));

--—- Boundaries -----
MY = fgets (LINP);
I=1:NBC
TMP = str2num(fgets (LINP));
[NBE(I), NB1(I), NB2(I), BT(I)] = deal(TMP(1l),TMP(2),TMP (3),TMP (4))

—-—— Component Dofs for IC -----

DUMMY = fgets (LINP) ;

for

end

o)

©

I=1:NIC
TMP = str2num(fgets (LINP)) ;

[Node (I),Dof(I),IC(I)]=deal (TMP(1),TMP(2),TMP(3));
NV (I)=6* (Node (I)-1)+Dof(I);

--- Material Properties -----

DUMMY = fgets (LINP) ;

TMP
[Yo

Mat

Mat
Mat

Mat

Mat:

o)

©

= str2num(fgets (LINP)) ;
ung, Poisson, Dens, Lambda, Mu] =
deal (TMP (1), TMP(2),TMP (3),TMP (4),TMP(5));

Prop (1
Prop (2)=Poisson;

)=Young;
)
Prop (3)=Dens;
)
)

Prop (4)=Lambda;
Prop (5)=Mu;

-—- Time Parameters —-----

DUMMY = fgets (LINP);

TMP

= str2num(fgets (LINP)) ;
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[dt,NT] = deal (TMP(1),TMP(2));

F————= Plot Parameters -----
DUMMY = fgets (LINP);

TMP = str2num(fgets (LINP));
[PM,WF] = deal (TMP (1), TMP(2));
% End of reading input file
fclose (LINP) ;

o)

% End of function Read Data

Plot_2d Mesh.m

function [Done] = Plot 2d Mesh (NN, NE, NEN, X, NOC)

% SPECIFICATION: This function serves to plot the mesh

oe

This function was based on the original
program of Chandrupatla and Belegundu

oe

oe

Calculate offset, epsilon, for printing node numbers
LX = abs(max (X(:,1))-min(X(:,1)));

LY = abs(max (X (:,2))-min(X(:,2)));

LMAX = max (LX,LY);

epsilon = 0.01*LMAX;

for N=1 : NE
for j=1 : NEN

xe (§)=X(NOC(N,7j),1);
ye(j)=X(NOC(N,j),2);
end;

xe (j+1)=xe (1) ;

ve (j+1)=ye(l);

line (xe, ye)
end;

disp(' Type 1 for on/off node labels,?n');

disp(' Type 2 for on/off element labels,?n');
disp(' Type 3 for on/off node & element labels,?n');
disp(' Type 0 to CONTINUE,?n');
status = 1; k=0; kold = -1;
while status ~= 0
user input=input (' Type <1,2,3 OR 0 > : ','s'");
if k == Son-->off

if kold ~= -1
ktemp=str2num(user input);
if ktemp ~= kold
user input = num2str (kold);
end;
end;
k=0;
else % off-->on
k=1;
end;
figure(l);
status = str2num(user input);
switch status
case 1
if k==
for i=1:NN
xc = X(i,1)-epsilon;yc=X(i,2)-epsilon;

hhl (i, :)=text (xc,yc,num2str (i), 'FontSize',8);
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end;
kold = str2num(user input);
else
delete (hhl) ;
end;
case 2
if k==
for i=1:NE
xc=0;yc=0;

for ii=1 : NEN
xc=xc + X(NOC(i,ii),1);
yc=yc + X(NOC(i,1ii),2);

end;
xc=xc/NEN; yc=yc/NEN;
hh2(i,:) = text(xc,yc,num2str (i), 'FontSize',8);
end;
kold = str2num(user input);
else
delete (hh2);
end;
case 3
if k==
for i=1:NN
xc = X(i,1);yc=X(i,2);
hh3(i,:) = text(xc,yc,num2str (i), 'FontSize',8);
end;
for i=1:NE
xc=0;yc=0;

for ii=1 : NEN
xc=xc + X(NOC(i,ii),1);
yc=yc + X(NOC(i,1ii),2);
end;
xc=xc/NEN; yc=yc/NEN;
hh4(i,:) = text(xc,yc,num2str (i), 'FontSize',8);
end;
kold = str2num(user input);
else
delete (hh3) ;delete (hh4);
end;
end;
axis equal;
end;

Done=1;

o)

% End of function Plot 2d Mesh

Contourl.m

function [Done] = Contourl (NN,NE,NEN, X,NOC, FF)

global hh

o)

% Nodal variable is stored in FF(1:NN)
FMAX = max (FF); FMIN = min (FF);

NCL = 10; %no. of colours
STP = (FMAX - FMIN) / NCL;
% Red-Orange-Green-Blue-Magenta colors
% for 10 contour lines [MM(1l,:) to MM(10,:)]
for i=1:10
a=((10-1)/12); b=1l; c=1;
H=[a,b,c];MM (i, :)=hsv2rgb (H);
end;

oe

Find boundary lines
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% Edges defined by nodes in NOC to nodes in NCON

for IE = 1 : NE
for I =1 : NEN
I1 =1 + 1;
if I1 > NEN
I1 = 1;
end;
NCON(IE, I) = NOC(IE, I1);
end;
end;
for IE = 1 : NE
for I = 1 : NEN
I1 = NCON(IE, I); I2 = NOC(IE, I);
INDX = 0;
for JE = IE + 1 : NE
for J = 1 : NEN
flow=2;
if (NCON (JE, J) == 0)
flow=1;
end;

if ((I1 ~= NCON(JE, J)) & (I1 ~= NOC(JE, J)))

flow=1;
end;

if ((I2 ~= NCON(JE, J)) & (I2 ~= NOC(JE, J)))

flow=1;
end;
if (flow==2)
NCON(JE, J) = 0; INDX = INDX + 1;
end
end;
end;
if INDX > O
NCON(IE, I) = 0;
end;
end;
end;
axis off

y============ Draw Boundary
=1 : NE
I =1 : NEN
if NCON(IE, I) > O
I1 = NCON(IE, I); I2 = NOC(IE, I);
xe (1)=X(I1,1);xe(2)=X(I2,1);
ve (1)=X(I1,2);ye(2)=X(12,2);

line (xe,ye, 'LineWidth', 2, 'color',
end;
end;
end
$=========== Contour Plotting ===========
for IE = 1 : NE
if (NEN == 3)
for IEN = 1 : NEN
IEE = NOC (IE, IEN);
U(IEN) = FF(IEE);
XX (IEN) = X(IEE, 1);
YY(IEN) = X(IEE, 2);
end;
LPLOT (U, XX,YY,FMIN, STP,NCL, MM);
elseif (NEN == 4)

XB = 0; YB = 0; UB = 0;
for IT = 1 : NEN
NIT = NOC(IE, IT);
XB = XB + .25 * X(NIT, 1);
YB = YB + .25 * X(NIT, 2);
UB = UB + .25 * FF(NIT);
end;

lbl)
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for IT = 1 : NEN
ITlL = IT + 1;
if (IT1 > 4)

ITl = 1;
end;
XX (1) = XB; YY(1) = YB; U(l) = UB;
NIE = NOC (IE, IT);
XX (2) = X(NIE, 1); YY(2) = X(NIE, 2); U(2) = FF(NIE);
NIE = NOC (IE, IT1);
XX (3) = X(NIE, 1); YY(3) = X(NIE, 2); U(3) = FF(NIE);
LPLOT (U, XX, YY, FMIN, STP,NCL, MM) ;
end;
else
disp( 'NUMBER OF ELEMENT NODES > 4 IS NOT SUPPORTED')
stop
end;
end;

)

% Draw legend
for i=1 : NCL

cc (i, 1l)=FMIN+STP*i;
end;
ccl=num2str (cc, 3);
legend (hh,ccl,-1);
axis equal;
Done=1;

% End of function contourl

Fm——m—mmmm—m function LPLOT
function [] = LPLOT (U, XX, YY,FMIN,STP,NCL, MM)
global hh

$THREE POINTS IN ASCend;ING ORDER
for I =1 : 2
C =U0(1); II = I;

for g =1+ 1 : 3
if C > U(J)
C =0(J); II = J;
end;
end;

U(II) = U(I); U(I) C;
Cl = XX(II); XX(II) = XX (I); XX(I)

= C1l;
Cl = YY(II); YY(II) = YY(I); YY(I) = C1;
end;
SU = (U(l) - FMIN) / STP;
IT = fix(SU+1.e-10)+1;
if II>NCL
II=NCL;
end;

UT = FMIN + II * STP;
while UT <= U(3)

X1 = ((U(3)-UT)*XX (1) + (UT-U(1))* XX(3))/(U(3) - U(1));
Y1 = ((U(3)-UT)*YY(1l) + (UT-U(1))* YY(3))/(U(3) - U(1));
L =1;
if UT > U(2)

L = 3;
end;
X2 = ((U(L)-UT)* XX(2) + (UT-U(2))*XX(L))/(U(L) - U(2));
Y2 = ((U(L)-UT)* YY(2) + (UT-U(2))*YY(L))/(U(L) - U(2));

xe (l)=X1l;xe (2)=X2;ye(l)=Y1l;ye(2)=Y2;
hh(II,1)=1line(xe,ye, 'LineWidth',2, 'color' , MM(II, :));
UuT = UT + STP;
II = I1 + 1;

end;

% End of function LPLOT
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Contour2.m

function [Done] = Contour2 (NN, NE,NEN, X,NOC, FF)

global hh cc

o)

% Nodal variable is stored in FF(1:NN)
FMAX = max (FF); FMIN = min (FF);

= 10; %no. of colours
STP = (FMAX - FMIN) / NCL;

% Red-Orange-Green-Blue-Magenta colors
% for 10 contour lines [MM(1l,:) to MM(10,:)]
for i=1:10
a=((10-1i)/12); b=1; c=1;
H=[a,b,c];
MM (i, :)=hsv2rgb (H) ;
end;

S============ Draw Contour

for N=1 : NE
hold on;
if (NEN == 3)
for IEN = 1 : NEN
IEE = NOC(N, IEN);

UU(IEN) = FF(IEE);
XX (IEN) = X(IEE, 1);
YY(IEN) = X(IEE, 2);
end;
LPLOT (UU, XX, YY, FMIN, STP,NCL, MM);
elseif (NEN == 4)
XB = 0; YB = 0; UB = 0;
for IT = 1 : NEN
NIT = NOC(N, IT);

XB = XB + .25 * X(NIT, 1);
YB = YB + .25 * X(NIT, 2);
UB UB + .25 * FF(NIT):;
end;
for IT = 1 : NEN
ITl = IT + 1;
if (IT1 > 4)

ITl = 1;
end;
XX (1) = XB; YY(1l) = YB; UU(l) = UB;
NIE = NOC(N, IT);
XX (2) = X(NIE, 1); YY(2) = X(NIE, 2); UU(2) = FF(NIE);
NIE = NOC(N, IT1);
XX (3) = X(NIE, 1); YY(3) = X(NIE, 2); UU(3) = FF(NIE);
LPLOT (UU, XX, YY, FMIN, STP,NCL, MM) ;
end;
else
disp( 'NUMBER OF ELEMENT NODES > 4 IS NOT SUPPORTED')
stop
end;

end;

% Draw legend;

dd = nonzeros(cc);
ccl=num2str (dd, 3) ;
legend (hh,ccl,-1);
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axis equal;
Done=1;

End of function contour2

——————————————————— function LPLOT

function [] = LPLOT (UU,XX,YY,FMIN,STP,NCL, MM)
global hh cc

[U, INDEX] = sort (UU);
SU = (U(2) - FMIN) / STP;
IT = fix(SU+1.e-10)+1;
if II>NCL
II=NCL;
end;

UT = FMIN + II*STP;IT=II;U2= U(2);
ULEVEL2 = UT;ILEVEL2=II;

%$lower triangle
if U(3)~=U(1)
while UT > U(1)
psi = (U2-U(1))/(U(3)-U(1));
Xpsi=XX (INDEX (1)) +psi* (XX (INDEX (3))-XX (INDEX (1)));
ypsi=YY (INDEX (1)) +psi* (YY (INDEX (3))-YY (INDEX(1)));
if U(2)~=U(1)
psi2=(U2-U(1))/(U(2)-U(1));
else
psi2=1;
end;
xc = XX (INDEX (1)) +psi2* (XX (INDEX (2))-XX (INDEX (1)));
yc=YY (INDEX (1)) +psi2* (YY (INDEX (2))-YY (INDEX (1) ))
xe (1)=XX (INDEX (1)) ;xe (2)=xc;xe (3)=xpsi;
ye (1)=YY (INDEX (1)) ;vye(2)=yc;ye(3)=ypsi;
hh(IT,:)=...
fill (xe,ye,MM(IT, :), 'LineWidth', .0000001, 'LineStyle', 'none"');
cc (IT,1)=U0T;
UT = UT-STP; U2=UT; IT = IT-1;
if IT<1
IT=1;
end;
end;
else
xe (1)=XX (INDEX (1)) ;xe (2)=XX (INDEX (2)) ;xe (3)=XX(INDEX(3));
ye (1) =YY (INDEX (1)) ;ye (2)=YY (INDEX (2));ye(3)=YY (INDEX(3))
hh(IT,:)=...
fill (xe,ye,MM(IT,:), 'LineWidth', .0000001, 'LineStyle', "'none');
end;

’

’

$upper triangle
UT=ULEVEL2-STP; IT=ILEVEL2; U2=U(2);
if U(3)~=U(1)
while UT < U(3)
psi = (U2-U(1))/(U(3)-U(1));
xpsi=XX (INDEX (1)) +psi* (XX (INDEX (3))-XX (INDEX(1)));
ypsi=YY (INDEX (1)) +psi* (YY (INDEX (3))-YY (INDEX (1)));
if U(3)~=U(2)
psi2=(U2-U(2))/(U(3)-U(2));
else
psi2=0;
end;
xC = XX (INDEX (2))+psi2* (XX (INDEX (3))-XX(INDEX(2)));
yc=YY (INDEX (2) ) +psi2* (YY (INDEX (3) ) =YY (INDEX (2) ) )
xe (1) =XX (INDEX (3)) ;xe (2)=xc;xe (3)=xpsi;
ye (1) =YY (INDEX (3));ye (2)=yc;ye(3)=ypsi;
hh(IT,:)=...
fill (xe,ye,MM(IT, :), 'LineWidth', .0000001, 'LineStyle', 'none"');
cc (IT,1)=U0T;
UT = UT+STP; U2=UT; IT = IT+1;

’
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if IT>NCL
IT=NCL;
end;
end;
else
xe (1)=XX (INDEX (1)) ;xe (2)=XX (INDEX (2)) ;xe (3)=XX(INDEX(3));
yve (1) =YY (INDEX (1)) ;ye (2)=YY (INDEX (2));ye(3)=YY (INDEX(3));
hh(IT,:)=...
fill (xe,ye,MM(IT, :), 'LineWidth', .0000001, 'LineStyle', 'none"');
end;

% End of function LPLOT

Initialize.m

g m e function Initialize -------"-"-""—----————-

function [UG]=Initialize(NN,NIC,NV,IC);

oe

SPECIFICATION: This function serves to create a initial UG with
corresponding IC

o o

oe

NIC: Number of IC (this is initial linear momentum in our case)
Number of nodes

a° oo
=z =z
<=
3

Number of the node of the initial condition n® I
% IC(I): Value of the initial condition n°® I
F———— Start with F=I (no deformation),
% p=0 (no velocities applied)
NQ=6*NN;

UG=zeros (NQ, 1) ;
for Node=1:NN

Inc=6* (Node-1) ;

% UG(1l+Inc,1)=0; % pl=0
S UG (2+Inc,1)=0; % p2=0
UG (3+Inc,1)=1; % Fll=1
% UG (4+Inc,1)=0; % F12=0
% UG (5+Inc,1)=0; % F21=0
UG (6+Inc,1)=1; % F22=1
end;
G———== Modify for Initial Conditions -----
for I = 1:NIC
Dof = NV(I);
UG (Dof,1) = IC(I);

end;

o)

% End of function Initialize

Global_M_Lumped.m

e function Global M Lumped —---—-————-——-———————-—

function [M Lumped]=Global M Lumped (NQ, X,NOC,NE) ;

o\

oe

SPECIFICATION: This function serves to create the lumped mass matrix

oe
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oe

DESCRIPTION OF MAIN VARIABLES:

oe

% NQ: Total number of degrees of freedom NQ=6*NN
% NOC: Number of Components
% X: Coordinates

oe

M Lumped: Global lumped mass matrix

©

F————= Global Stiffness Matrix

M Lumped = zeros(NQ,1);

for N = 1:NE
%--- Getting global numeration
Nodel = NOC(N,1);
Node?2 NOC (N, 2) ;
Node3 NOC (N, 3) ;

%--- Getting coordinates
X1 = X (Nodel,1l):;
Yl = X (Nodel, 2)
X2 = X (Node2,1);
Y2 = X (Node2,2);
)
)

’

’

X3 X (Node3, 1
Y3 = X (Node3, 2

’

o)

%——-—- Jacobian determinant and area of element
Area = 0.5*% ((X1-X3)*(Y2-Y3)-(X2-X3)*(Y1-Y3));

% —-- Assembling matrix
M Lumped=Assemble M(M Lumped,Nodel,Area); % Contribution 1lst node
M Lumped=Assemble M(M Lumped,Node2,Area); % Contribution 2nd node
M Lumped=Assemble M(M Lumped,Node3,Area); % Contribution 3rd node
end; % End of for loop N = 1:NE

% End of function Global M Lumped

o)

Fm——— function Assemble M -----—-------—-

function [M Lumped]=Assemble M(M Lumped,Node,Area)

oe

oe

SPECIFICATION: This function adds the contribution
of elemental Area to a Node and
modifies the global M Lumped

oe

oe

Start=60* (Node-1) +1;
End=Start+5;
M_Lumped(Start:End,1)=M_Lumped(Start:End,1)+(Area/3)*ones(6,1);

o)

% End of function Assemble M

Wall BC.m

m——m—m function Wall BC —-------—-————————————————

function [NU]=Wall BC (NBC,NB1,NB2,BT);

o)

o

oe

SPECIFICATION: This functions serves for putting a penalty where
the BC are located in a strong way on p (linear momentum)
Strictly it is not necessary to do this but results

oe

oe
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o o

oe

NBC
NU (
BC (
NBE
NB1
BT:
BT=
BT=
BT=
BT=
BT=
BT=
BT=

A 0 0° P AP d° o° o° od° d° o

oe

Point

for s

are better in practice

: Number of BC (boundary conditions)

side): Number of the dof of the boundary condition n°® I
side): Value of the boundary condition n° I

: Element on the boundary

,NB2: Nodes on the boundary side
Boundary type
0 : Clamped wall px=0, py=0
-1 : Hinges parallel to X py=0
-2 : Hinges parallel to Y px=0
-10 : Movement parallel to X py=0, Pn=0
-20 : Movement parallel to Y px=0, Pn=0
1 : Free boundary No strog condition
10 : Load No strog condition

~0;
ide = 1:NBC

Dof Startl=6*(NBl (side)-1);
Dof Start2=6* (NB2 (side)-1);

if (BT (side)==0) % px=0, py=0 Fxy=Fyx=0
Point=Point+1;

NU (Point) ( )i

NU (Point+1) = (Dof Startl+2);

NU (Point+2) = (Dof Startl+4);
( )

NU (Point+3) = (Dof startl+5

Dof Startl+l

’

NU (Point+4
NU (Point+5
NU (Point+6
NU (Point+7

Dof Start2+1)

Dof Start2+2);
) .
)

Dof Start2+4
Dof Start2+5

(
(
(
( -
Point=Point+7;
elseif (BT (side)==-1) % py=0 Fxy=Fyx=0
Point=Point+1;
NU (Point) = (Dof Startl+2);

NU (Point+1) (Dof Startl+4);
NU (Point+2) (Dof Startl+5);

NU (Point+3) (Dof Start2+2);
NU (Point+4) (Dof Start2+4);
NU (Point+5) = (Dof Start2+5);

Point=Point+5;

elseif (BT (side)==-2) % px=0 Fxy=Fyx=0
Point=Point+1;
NU (Point) = (Dof Startl+l);

NU (Point+1) (Dof Startl+4);
NU (Point+2) (Dof Startl+5);

NU (Point+3) = (Dof Start2+1);
NU (Point+4) = (Dof Start2+4);
NU (Point+5) (Dof Start2+5);

Point=Point+5;

elseif (BT (side)==-10) % py=0 Fxx=Fyy=1
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Point=Point+1;

NU (Point) (Dof Startl+2);
NU (Point+1) (Dof Startl+3);
NU (Point+2) = (Dof Startl+6);

NU (Point+3)
NU (Point+4)
NU (Point+5)

(Dof Start2+2);
(Dof Start2+3);
(Dof Start2+6);

Point=Point+5;

elseif (BT (side)==-20) % px=0 Fyy=Fxx=1
Point=Point+1l;
NU (Point) = (Dof Startl+l);

NU (Point+1l) = (Dof Startl+3);
NU (Point+2) (Dof Startl+6);

NU (Point+3)
NU (Point+4)
NU (Point+5)

(Dof Start2+1);
(Dof Start2+3);
(Dof Start2+6);

Point=Point+5;
end;
end;

% End of function Wall BC

Geometry.m

function [DJ,B,Normal,Length,N1,N2] = Geometry (NE,X,NOC,NBC,NBE,NB1,NB2)

oe

oe

SPECIFICATION: This function serves to create the geometric
properties of the element

ol o

oe

MAIN VARIABLES

oe

% OUTPUT

% DJ: Jacobian of the local-global transformation DJ=2A
% if counter clock wise notation of nodes DJ>0

% X: Coordinates

% NOC: Number of components

% N: Number of the element

% Normal: Normal to the side on the boundary element

% Length: Length of the side on the boundary of the element
$ N1,N2: Local coodinates of the nodes on teh boundary NB1,NB2
% INPUT

% NE: Number of elements

% X: Global coordinates of nodes

% NOC: Local numeration of nodes

% NBC: Number of Boundary Conditions

% NBE: Number of Element on the boundary

% NB1,NB2: Nodes on the Boundary side

DJ = zeros(l,NE);

B = zeros(3,2,NE);
Normal = zeros(2,1,NBC);
Length = zeros(1,NBC);
N1 = zeros(1,NBC);

N2 = zeros(1,NBC);
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for N = 1:NE
[DJ(1,N),B(1:3,1:2,N)] = Voigt (N, X,NOC) ;
end;
for side = 1:NBC
[Normal(1:2,1,side),Length(1l,side),N1(1,side),N2(1,side)]=...
Get Normal (X,NOC,NBI1 (side),NB2 (side) ,NBE (side)) ;
end;

% End of function Geometry

g m function Voigt

function [DJ,B] = Voigt (N, X,NOC);

oe

SPECIFICATION: This procedure serves to create the Jacobian
and Voigt B matrix

oe

oe

MAIN VARIABLES

% DJ: Jacobian of the local-global transformation DJ=2A
% if counter clock wise notation of nodes DJ>0

% B(i,j): dNi/dXj

s X: Coordinates

% NOC: Number of components

% N: Number of the element

$ I1,I2,I3: Global notation of node

o)

%—-—-—- Get coordinates

I1 = NOC(N, 1);

I2 = NOC(N, 2);

I3 = NOC(N, 3);

X1l = X(I1, 1);

Y1l = X(I1, 2);

X2 = X(12, 1);

Y2 = X(I2, 2);

X3 = X(I3, 1);

Y3 = X(I3, 2);
$——— Definition of B() Matrix (Voigt matrix)
% B(i,j)= partial of shape function Ni respect to Xj

X21 = X2 - X1;

X32 = X3 - X2;

X13 = X1 - X3;

Y12 = Y1 - Y2;

Y23 = Y2 - Y3;

Y31l = Y3 - Y1;

DJ=X13*Y23-X32*Y31;

o)

o)

o

°

B(1, 1) = Y23 / DJ;
B(l, 2) = X32 / DJ;
B(2, 1) = Y31 / DJ;
B(2, 2) = X13 / DJ;
B(3, 1) = Y12 / DJ;
B(3, 2) = X21 / DJ;

% End of function Voigt

g m function Get Normal

function [Normal,Length,N1,N2]=Get Normal (X,NOC,NB1,NBZ,N) ;
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oe

oe

SPECIFICATION: This function serves to calculate:
- The normal between NB1 NB2 for the element N,
- The length of the side
- The local coordinates N1,N2 of NB1,NB2

o o

oe

if (NB1==NOC (N, 1)); N1=1;
elseif (NB1==NOC(N,2)); N1=2;
elseif (NB1==NOC (N, 3)); N1=3; end;
if (NB2==NOC (N, 1)); N2=1;
elseif (NB2==NOC(N,2)); N2=2;
elseif (NB2==NOC (N, 3)); N2=3; end;

if (N1==N2)

Normal=zeros (2,1);

Length=0;
else
N3 = 6-N1-N2;
NC3 = NOC (N,N3);
X1l = X(NB1,1);
Yl = X(NB1,2);
X2 = X(NB2,1);
Y2 = X(NB2,2);
X3 = X(NC3,1);
Y3 = X(NC3,2);

X21 = X2 - X1;
X32 = X3 - X2;
X13 = X1 - X3;
Y12 = Y1 - Y2;
Y23 = Y2 - Y3;
Y31 = Y3 - Y1;

DJ=X13*Y23-X32*Y31;
Length=sqrt (X21*X21+Y12*Y12) ;

Normal (1,1)=-sign(DJ)*Y12/Length;
Normal (2,1)=-sign (DJ) *X21/Length;

end; % End of if

o)

% End of function Get Normal

Global RHS.m

e function Global RHS —-------——-———-————————————
function [RHS,Error P]=Global RHS(DJ,B,Normal, Length,N1,N2,NE,NQ, NOC,
NBE, BT, NU,Mat Prop,UG,Time,dt);

oe

oe

SPECIFICATION: This procedure serves to create the system

oe

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% NN: Number of nodes

% NE: Number of elements

% NOC: Number of Components

% RHS: Right hand side vector in global system

% RHSE: Contribution to the right hand side vector of one element

$ UE: Unknowns=transpose[ pl F1 | p2 F2 | ... ] 6*NN rows, 1 column

oe

(for triang2d, 18x1)
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% UG: Unknowns in global coordinates

% NDIM: Number of coordinates per node (i.e. NDIM=2 in 2D)
% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% BT: Boundary type

% BT= 0 : Clamped wall px=0, py=0

$ BT= -1 : Hinges parallel to X py=0

% BT= -2 : Hinges parallel to Y px=0

$ BT= -10 : Movement parallel to X py=0,

% BT= -20 : Movement parallel to Y px=0,

% BT= 1 : Free boundary Pn=0

% BT= 10 : Load Traction=Pn

% DJ: Determlnant of the Jacobian of the transformation

DJ=2*Area of element

oe

oe

---- Initializing global RHS and Error variables
RHS = zeros (NQ,1);

NN=NQ/6;
P Max = -1e300*ones(NN,1);
P Min = 1e300*ones(NN,1);

Error P= zeros(NN,1);

% —---- Material properties
Young = Mat Prop(1l);
Poisson = Mat Prop(2);
Kappa=Young/ (3-6*Poisson) ;
Dens = Mat Prop(3);
Lambda Vis = Mat Prop(4);
Mu Vis = Mat Prop(5);

for N = 1:NE

% —---—- Geometric properties
% Global nodes mumeration
Nodel = NOC(N,1);

Node2 = NOC(N, 2) ;

Node3 = NOC (N, 3) ;

% Other geometric properties
DJE=DJ (1,N) ;
BE=B(1:3,1:2,N);

& ————- At time n
[UE] = Local (UG,Nodel,Node2,Node3) ;

% Calculation of old flux
[

15); F3(1,2) = UE(l6); % F Node3
17); F3(2,2) = UE(18);
% Volumetrlc Stress: Pressure

o

FluxE] = Flux Unk(Young,Poisson, Dens, UE);
$ ————- At time n+1/2
% Prediction of new local element unknowns
[dUE] = Unk Predict (FluxE,BE,dt);
UE=UE+dUE;
& ————- Start Error control structure over pressure
F1(1,1) = UE(3); F1(1,2) = UE(4); % F Nodel
F1(2,1) = UE(5); F1(2,2) = UE(6);
F2(1,1) = UE(9); F2(1,2) = UE(10); % F Node2
F2(2,1) = UE(11l); F2(2,2) = UE(12);

( ( )

3¢ (

Pl=Kappa* (det (F1)-1); $ PV1
P Max (Nodel) = max(P_Max(Nodel),Pl);
P Min(Nodel) = min (P _Min(Nodel), P1);
P2=Kappa* (det (F2)-1); % PV2
P Max (Node2) = max (P _Max (Node2),P2);

% Getting local element unknowns from global unknowns...
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P Min(Node2) = min(P_Min (Node2),P2);
P3=Kappa* (det (F3)-1); % PV3
P Max (Node3) = max (P Max (Node3),P3);
P Min (Node3) = min (P _Min(Node3),P3);

o)

& ————- End of error control structure

Prediction of new local element flux
FluxE] = Flux Unk(Young, Poisson,Dens,UE);

— o°

& ———— Viscous flux

[FluxE Vis]=Flux Vis Unk(Lambda Vis,Mu Vis, Dens, UE,BE) ;
% Total flux without viscosity

FluxE=FluxE-FluxE Vis;

% ————- Getting internal contribution of the element
RHSE=Internal RHS (FluxE,DJE,BE,dt) ;

)

& ————- Getting external contribution of the boundary
for side=1:length (NBE)
if (N==NBE (side))
NormalE=Normal (1:2,1,side);
LengthE=Length (1, side) ;

N1E=N1 (1, side) ;
N2E=N2 (1, side) ;

Startl = 6* (N1E-1)+1;

Endl = Startl+5;

Start2 = 6* (N2E-1)+1;

End2 = Start2+5;

FluxN(1:6 ,1) = FluxE(Startl:Endl,1:2)*NormalE;

FluxN(1:6 ,1) = Modify Flux(FluxN(1:6 ,1),BT(side),Time);
FluxN(7:12,1) = FluxE(Start2:End2,1:2)*NormalE;

FluxN(7:12,1) Modify Flux(FluxN(7:12,1),BT(side),Time);

% Calculation of external contribution of element to RHS
[External]=External RHS (FluxN,N1E,N2E, LengthE,dt);

RHSE=RHSE+External;
end; % End of if (N==NBE (side))
end; % End of for side=l:length (NBE)

% —---- Assembling
[RHS] = Assemble (RHS,Nodel,Node2,Node3,RHSE) ;

end; % End of general loop

% —---- Modify RHS for Wall conditions (Strong form)
[RHS] = Modify Wall BC (RHS,NU) ;

% —---- Calculate deviation error of volumetric pressure
Error P(1:NN) = P Max(l:NN) - P Min(1:NN);

% End of function Global RHS

s function Modify Flux --—-----—------

o)

function [Flux] = Modify Flux(Flux,BT,Time)

oe

% SPECIFICATION: This function modifies the Flux of the Element

Q
°

[
°

Nodel

Node2
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oe

oe

FluxE depending on the Boundary Type BT

% BT= 0 Clamped wall px=0, py=0
% BT= -1 Hinges parallel to X py=0
% BT= -2 Hinges parallel to Y px=0
% BT= -10 Movement parallel to X py=0, Pn=0
$ BT= -20 Movement parallel to Y px=0, Pn=0
% BT= 1 Free boundary Pn=0
% BT= 10 Load Traction=Pn
if (BT==0) % px=0, py=0

Flux(3,1)=0;

Flux(4,1)=0;

Flux (5,1)=0;

Flux(6,1)=0;
elseif (BT==-1) % py=0

Flux (5,1)=0;

Flux (6,1)=0;
elseif (BT==-2) % px=0

Flux(3,1)=0;

Flux (4,1)=0;
elseif (BT==-10) % py=0 Pn=0

Flux (1,1)=0;

Flux(2,1)=0;

Flux(5,1)=0;

Flux(6,1)=0;
elseif (BT==-20) % px=0 Pn=0

Flux(1,1)=0;

Flux(2,1)=0;

Flux(3,1)=0;

Flux(4,1)=0;
elseif (BT==1) % Free condition Pn=0

Flux(1,1)=0;

Flux(2,1)=0;
elseif (BT==10) % Load condition Pn=traction

Flux(l,1)=-1*Traction(Time, 1) ;
Flux (2,1)=-1*Traction (Time, 2) ;

end;

% End of function Modify Flux

function Internal RHS

function [RHSE]=Internal RHS (FluxE,DJ,B,dt):;

oe

This function serves to calculate the contribution
to RHS of each element considering the internal
flux and external loss through the boundary.

% SPECIFICATION:
Fluxl = FluxE( 1:6,
Flux2 = FluxE( 7:12,
Flux3 = FluxE(13:18,

1:2);
1:2);
1:2);
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Area=0.5*DJ;

zeros (6,2);
(Flux1l+Flux2+Flux3)/3;

Int Rhs=zeros(18,1);

In

In

In

RH

t Rhs( 1:6 ,1) =

t Rhs( 7:12,1)

t Rhs(13:18,1)

SE=Int Rhs;

dt*Area* (Average Flux(1:6,1)*B(1,1)+

Average Flux(1:6,2)*B(1,2)); % Node 1
dt*Area* (Average Flux(1:6,1)*B(2,1)+

Average Flux(1:6,2)*B(2,2)); % Node 2
dt*Area* (Average Flux(1:6,1)*B(3,1)+

Average Flux(1:6,2)*B(3,2)); % Node 3

End of function Internal RHS

function [External] =

oC d° oo o

oe

if

el

en

function External RHS

External RHS (FluxN,N1,N2,Length,dt);

SPECIFICATION: This function serves to calculate the contribution
to RHS of each element considering the external
loss through the boundary N1-N2

(N1==N2)

External=zeros (18,1);

se

o)

External = zeros(18,1);
Startl = 6* (N1-1)+1;
Endl = Startl+5;
Start2 = 6* (N2-1)+1;
End2 = Start2+5;
Fluxl = FluxN(l:6 ,1);
Flux2 = FluxN(7:12,1);
External (Startl:Endl, 1)
External (Start2:End2,1)

d;

% Calculation of starting d.o.f.

for N1 and N2

= —(0.5)*dt* ((2*Flux1l+1*Flux2)/3) *Length;
= —(0.5)*dt* ((2*Flux2+1*Fluxl) /3) *Length;

End of function External RHS

function Local

function [UE]=Local (UG,Nodel,Node2,Node3) ;

o)

A o o° o o

oe

SPECIFICATION: This function serves to obtain
the local unknowns from global coordinates

UG: Global vector

UE:
UE=zeros (18,1);

% Node 1
Startl =
Endl =
UE(1l:6,1) =

6* (Nodel-1)+1;
Startl+5;
UG (Startl:Endl,1);

Local vector for the element
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% Node 2

Start?2 = 6* (Node2-1)+1;

End2 = Start2+5;

UE(7:12,1) = UG(Start2:End2,1);
% Node 3

Start3 = 6* (Node3-1)+1;

End3 = Start3+5;

UE(13:18,1) = UG(Start3:End3,1);

% End of function Local

R e bt function Modify Wall BC -------——-——----

function [RHS]=Modify Wall BC(RHS,NU);

% SPECIFICATION: This function serves to modify global RHS vector

% for the Wall Boundary Conditions in the nodes
% given by NU

for I = 1l:length(NU)

N = NU(I);
RHS (N) = 0;
end;

% End of function Modify Wall BC

function [RHS]=Assemble (RHS,Nodel,Node2,Node3,RHSE)

oe

oe

SPECIFICATION: This function adds the contribution
of elemental RHS to the global RHS

oe

oe

% Node 1

Startl = 6* (Nodel-1)+1;

Endl = Startl+5;

RHS (Startl:Endl,1) = RHS(Startl:Endl,1)+RHSE( 1:6 ,1);
% Node 2

Start2 = 6* (Node2-1)+1;

End2 = Start2+5;

RHS (Start2:End2,1) = RHS(Start2:End2,1)+RHSE( 7:12,1);
% Node 3

Start3 = 6* (Node3-1)+1;

End3 = Start3+5;

RHS (Start3:End3,1) = RHS(Start3:End3,1)+RHSE (13:18,1);

o)

% End of function Assemble

Unk_ Predict.m

function [Inc Unk Pred]=Unk Predict (Flux,B,dt);

o° o oo o

oe

the half-step

F function Unk Predict ----------—------—-

SPECIFICATION: This function serves to predict the unknowns per element
at the time step n+l/2 from the Flux given at time n
(at element level), this is, the Taylor prediction of
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oe

oe

DESCRIPTION OF MAIN VARIABLES:

oe

$ Flux: -l*transpose[ Pl v1xI | P2 v2xI | P3 v3xI .... ] 6*NN rows,
% 2 columns (for triang2d, 18x2)
% Unknowns: transpose[ pl F1 | p2 F2 | ... ] 6*NN rows,
% 1 column (for triang2d, 18x1l)
% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% dt: Step of time

Inc Node Pred = zeros(6,1);

Inc _Unk Pred = zeros (18,1);

% PREDICTOR STEP

Inc Node Pred = -0.5*dt*Div_Flux(Flux,B);

Inc_Unk Pred(l:6,1) = Inc Node Pred;

Inc Unk Pred(7:12,1) = Inc Node Pred;

Inc Unk Pred(13:18,1) = Inc Node Pred;

oe

End of Unk Predict

o)

F———m—— function Div Flux —--—----=—-—-———-—————————— -

o
°

function [DFlux]=Div_ Flux (FluxE,B);

oe

oe

SPECIFICATION: This Fluxction serves to calculate the divergence
of the Flux of the element

a° oo

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

% Flux: Elemental flux

% -1l*transpose[ Pl v1xI | P2 v2xI | P3 v3xI .... ] 6*NN rows,
S 2 columns (for triang2d, 18x2)

% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)

% OUTPUT

% DFlux: Divergence of Flux

DFlux=zeros(6,1);

DFlux=(FluxE(1:6,1)*B(1,1)+FluxE(7:12,1)*B(2,1)+FluxE(13:18,1)*B(3,1)+...
FluxE (1:6,2)*B(1l,2)+FluxE(7:12,2)*B(2,2)+FluxE (13:18,2)*B(3,2));

o)

% End of Div_Flux function

Flux_Unk.m

e function Flux Unk —-----------—-——————————-

function [FluxE]=Flux Unk(Young, Poisson, Dens,UE);

oe

oe

SPECIFICATION: This function serves to calculate the Flux from the
Element Unknowns at the same time step for one element

0P o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT

oe

oe

Young: Young elastic parameter
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% Poisson: Poisson elastic parameter
% Dens: Density
$ UE: transpose[ pl F1 | p2 F2 | p3 F3 ]

oe

6*Nodes rows, 1 column (for triang2d, 18x1)

oe

$ OUTPUT

% FluxE: -1l*transpose[ Pl v1xI | P2 v2xI | P3 v3xI ]
% 6*NN rows, NDIM columns (for triang2d, 18x2)
% F: Deformation gradient tensor

FluxE=zeros (18,2);

UN=UE (1:6,1); %Nodel
FluxE(1:6,1:2)=Nodal Flux (UN, Young, Poisson, Dens) ;

UN=UE (7:12,1); %Node?2
FluxE(7:12,1:2)=Nodal Flux(UN,Young,Poisson,Dens) ;

UN=UE (13:18,1); %Node3
FluxE(13:18,1:2)=Nodal_Flux(UN,Young,Poisson,Dens);

% End of function Flux Unk;

o)

F——————— function Nodal Flux ------—-------

function [FluxN]=Nodal Flux (UN,Young,Poisson,Dens);

oe

oe

SPECIFICATION: This function serves to obtain the nodal Flux
from the vector of Nodal Unknowns UN

oe

oe

Deformation gradient tensor F

F(1,1)=UN(3); F(1,2)=UN(4);
F(2,1)=UN(5); F(2,2)=UN(6);

oe

Piola stress tensor
P=Piola (Young,Poisson,F);

FluxN=zeros (6,2);
FluxN(1:2,1:2)=-P(1:2,1:2);

FluxN(3,1)=-UN(1) /Dens; FluxN(3,2)= 0;
FluxN(4,1)= 0; FluxN(4,2)=-UN(1) /Dens;
FluxN (5,1)=-UN(2) /Dens; FluxN(5,2)= 0;
FluxN(6,1)= 0; FluxN (6,2)=-UN(2) /Dens;

% End of function Nodal Flux

Flux Unk Vis.m

———————————————————————— function Flux Unk Vis ----------——--—————————————
function [FluxE Vis]=Flux Vis Unk(Lambda Vis,Mu Vis,Dens,UE,B);

o)

o\

oe

SPECIFICATION: This function serves to calculate the Flux from the
Element Unknowns at the same time step for one element

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT

oe

oe

Lambda vis: Volumetric viscous parameter

% Mu Vis: Shear viscous parameter
% Dens: Density
$ UE: transpose[ pl F1 | p2 F2 | ... ]

oe

6*Nodes rows, 1 column (for triang2d, 18x1)
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oe

% OUTPUT

% FluxE Vis: -l*transpose[ Pl vlxI | P2 v2xI | P3 v3xI .... ]
% 6*NN rows, NDIM columns (for triang2d, 18x2)

s F: Deformation gradient tensor

FluxE Vis=zeros(18,2);

Linear momentum

oe

pl=UE(1:2,1);
p2=UE (7:8,1) ;
p3=UE (13:14,1);

o)

% Gradient of linear momentum
[Grad p]=Grad Lin Mom (pl,p2,p3,B);

for Node=1:3
Inc=6* (Node-1) ; % Inc=0,6,12,...
U Nodal=UE ((1+Inc): (6+Inc));
Flux Nodal=zeros (6,2);
Flux Nodal=Nodal Flux (U Nodal,Lambda Vis,Mu Vis,Dens,Grad p);
FluxE Vis((l+Inc): (6+Inc),1:2)=Flux Nodal;
end; % End of for

% End of function Flux Unk;

$——————- function Nodal Flux -------------

function [FluxN]=Nodal Flux (UN,Lambda Vis,Mu Vis,Dens,Grad p);
% SPECIFICATION: This function serves to obtain the nodal Flux
from the vector of Nodal Unknowns UN

oe

F=Get_F (UN) ;
P=zeros (2,2);
P Vis=Piola Vis(Lambda Vis,Mu Vis,Dens,F,Grad p);

FluxN=zeros (6,2) ;
FluxN(1:2,1:2)=+1.0*P_Vis;

% End of procedure Put FluxE Vis

o)

s——————— function Get F -------------———-
function [F]=Get F(UN);

% SPECIFICATION: This function serves to obtain teh deformation F
from the vector of Nodal Unknowns UN

oe

F=zeros(2,2);
F(1,1)=UN(3); F(1,2)=UN(4);
F(2,1)=UN(5); F(2,2)=UN(6) ;

% End of function Get F

o)

F-——————- function Grad Lin Mom ---—-----—-—-—----
function [Grad p]=Grad Lin Mom(pl,p2,p3,B);

o)

o

oe

SPECIFICATION: This Fluxction serves to calculate the gradient
of the vector of Unknowns

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT

oe

oe

pi= linear momentum of node i
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5 p=[ px

3 py 1]

% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% OUTPUT

% Grad p: Gradient of Unknowns

5 | px,x px,y |

oe

| py,x py,y |
Grad p=zeros(2,2);

o)

% First column: derivatives with respect to X
Grad p(1:2,1)=pl(1:2)*B(1,1)+p2(1:2)*B(2,1)+p3(1:2)*B(3,1);

o)

% Second column: derivatives with respect to Y
Grad p(1:2,2)=pl(1:2)*B(1,2)+p2(1:2)*B(2,2)+p3(1:2)*B(3,2);

o)

% End of Grad Lin Mom function

Piola.m

function [P]=Piola(Young, Poisson,F);

oe

oe

SPECIFICATION: This function serves to calculate the first Piola
stress tensor in 2D problems

o o

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT:

oe

oe

F o= Deformation gradient tensor
Young: Young elastic parameter
Poisson: Poisson elastic parameter

oC oo o°

oe

OUTPUT:

oe

oe

P: First Piola-Kirchhoff stress tensor

oe

% Mode
Model=4;

o\©

-4: Nearly Incompressible
= Hookean Linear Elastic
= Classical Neo-Hookean
= Extended Neo-Hookean
Bonet's model

= Compressible Blatzé&Ko
= Small deformations

a° oo o° o
I

oe
o U1 W N
|

oo

G=0.5*Young/ (1.0+Poisson); % Shear modulus (also called Mu)
Lambda=2.0*Poisson*G/ (1.0-2.0*Poisson) ;

% Calculation of Piola Kirchhoff stress tensor

J=det (F) ;
F INV T = inv (transpose(F));
C=transpose (F) *F; % Cauchy-Green tensor
if (Model==1) % Linear elastic (Saint-Venant&Kirchhoff)

E=0.5* (C-ones(2,2)); % Green-Lagrange tensor
P=Lambda*trace (E) *F+2*G*F*E;

F———mmmm—m function Piola -----"-"--"—-———————-——————
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elseif (Model==2) % Classical Isotropic Neo-Hookean
P=Lambda*log (J) *F_INV_T+G* (F-F_INV T);

elseif (Model==3) % Extended Isotropic Neo-Hookean (Simo)
P=0.5*Lambda* (J*J-1) *F_INV_T+G* (F-F_INV T);

elseif (Model==4) % Transversely Isotropic Neo-Hookean
% (Boneté&Burton)

Kappa=Lambda+ (2/3) *G; % Bulk modulus
P=Kappa* (J-1) *J*F INV T+...
G*(JA(—2/3))*(F—((l/3)*(l+trace(C))*FileiT));
elseif (Model==5) % Simple Compressible (Blatz&Ko)

B=F*transpose (F) ;
P=G* (J*eye (2) -inv (B) ) *F_INV T;

elseif (Model==6) % Small deformations
Kappa=Lambda+ (2/3) *G; % Bulk modulus
P=G* (F+transpose (F) - (2/3) * (1+trace (F) ) *eye (2) ) +Kappa* (trace (F) -
2) *eye (2);

end;

o)

% End of Piola function

Piola_Vis.m

g m function Piola Vis -----—------————————————

function [P _Vis]=Piola Vis(Lambda Vis,Mu Vis, Dens,F,Grad p);

oe

oe

SPECIFICATION: This function serves to calculate the viscous 1lst
Piola Kirchhoff stress tensor in 2D problems

oe oo

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

INPUT:
Lambda Vis, Mu Vis : Viscous parameters

oe

oe

% Grad p: Gradient of Unknowns

% | px,x px,y |

5 | py,x pPy,y |

% OUTPUT:

% Pv: Viscous Piola-Kirchhoff stress tensor

oe

oe

Cauchy-Green deformation tensor

C = transpose (F) *F;

oe

Jacobian

J = det(F);

oe

Inverse of the transpose of F

F _INV T = inv(transpose (F));
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% Viscous constitutive model

Consl =
Cons2 =

P Vis =

(for numerical purposes only)

(Lambda_Vis/(J*Dens)); % Volumentric constant
(Mu_Vis/ (J*Dens)) ; %

Shear constant

Consl*trace (F_INV T*transpose(Grad p))*F INV T+...

Cons2*Grad p*inv (C)+...
Cons2*F INV T*transpose (Grad p)*F INV T;

o)

% End of Piola Vis function

Mesh_Error.m

function [Error RF,DE] = Mesh Error (NOC,NE, UG, B, Young, Poisson)
o)

o d° o o° o o

oe

Error RF:

oe

oe

DJ:

oe

oe

NOC:
NE:
UG:
B:

oC o° oo

oe

o)

Error RF=0;
DE=0;

for N=1:NE
Nodel

Node2
Node3

% Voigt
E = B(

es}

Young, Poisson:

% Initialize

SPECIFICATION: This function serves to calculate some parameter to

control the errors

MAIN VARIABLES

Average rotational of F (deformation gradient) per element
It must be zero becase the rotational of a gradient is 0.
Jacobian of the transformation local-global

If counter clock wise notation of nodes DJ>0

Nodal Coordinates

Number of elements

Unknowns in global coordinates

Bij is the partial of Ni respect to Xj
elastic parameters

(Voigt matrix)

NOC (N, 1) ;
NOC (N, 2) ;
NOC (N, 3) ;

matrix

1:3,1:2,N);

% Local unknowns
[

UE] =

Local (UG, Nodel, Node2,Node3) ;

% Deformation gradient F

F1(1,1)
F1(2,1)
F2(1,1)
F2(2,1)
F3(1,1)
F3(2,1)

UE (3) ; F1(1,2) = UE(4); % F Nodel
UE (5) ; Fl1(2,2) = UE(6);
UE (9) ; F2(1,2) = UE(10); % F Node2
UE (11); F2(2,2) = UE(12);
UE (15); F3(1,2) = UE(1l6); % F Node3
UE(17); F3(2,2) = UE(18);

F Ave= (F1+F2+F3)/3;

o)

Piolal =
Piola2 =
Piola3 =

o)

% Divergence of 1lst P-K

% 1lst Piola-Kirchhoff stress tensor
Piola(Young, Poisson,Fl);

Piola (Young, Poisson, F2)
Piola (Young, Poisson, F3)
Piola Ave=(Piolal+Piola2+Piola3)

’

/3;
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[DP] = Div P(Piolal,Piola2,Piola3,BE);

% Linear momentum
pl = UE(1:2,1);

p2 = UE(7:8,1);

p3 = UE(13:14,1);
p_Ave=(pl+p2+p3)/3;

% Linear momentum gradient

[Grad p]=Grad Lin Mom(pl,p2,p3,BE);

% Rotational error averaged

[ExrrorE] = Error Rot E(F1,F2,F3,BE);
Error RF = Error RF+(ErrorE/NE);

% Total derivative of entropy

[EntropyE] = EntropyiE(Gradip,DP,piAve,PiolaiAve);
DE = DE + EntropyE;
end;

% End of function Error

5 —————————— function Error RotF E —-—---—-—-——-——-—-—--—

function [ErrorE]=Error Rot E(F1,F2,F3,B);

o)

o\

oe

SPECIFICATION: This Function serves to calculate the error
of the vector of Unknowns
DESCRIPTION OF MAIN VARIABLES:

o oo

oe

% INPUT

% Fi: Deformation gradient of node i

% | Fxx Fxy |

% | Fyx Fyy |

% dt: Increment of ime step

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% OUTPUT

% RotF: Rotational of the deformation gradient F

oe

| Fxy,x - Fxx,y |
| Fyy,x - Fyx,y |

oe

RotF=zeros (2,1);

DxFxy = F1(1,2)*B(1,1) + F2(1,2)*B(2,1) + F3(1,2)*B(3,1);
DyFxx = F1(1,1)*B(1,2) + F2(1,1)*B(2,2) + F3(1l,1)*B(3,2);
DxFyy = F1(2,2)*B(1,1) + F2(2,2)*B(2,1) + F3(2,2)*B(3,1);
DyFyx = F1(2,1)*B(1,2) + F2(2,1)*B(2,2) + F3(2,1)*B(3,2);

RotF (1,1)=DxFxy-DyFxx;
RotF (2,1)=DxFyy-DyFyx;

ErrorE=sqgrt (RotF (1) *RotF (1) +RotF (2) *RotF (2)) ;

oe

End of function Error Rot F E

function [UE]=Local (UG, Nodel,Node2,Node3) ;

oe

oe

SPECIFICATION: This function serves to obtain
the local unknowns from global coordinates

oe

oe

g function Local ---------—-——--—-————-—-
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oe

UG: Global vector
UE: Local vector for the element

oe

UE=zeros (18,1);

% Node 1

Startl = 6* (Nodel-1)+1;

Endl = Startl+5;

E(l:6,1) = UG(Startl:Endl,1);

% Node 2

Start2 = 6* (Node2-1)+

End2 = Start2+5;

UE(7:12,1) = UG(Start2:End2,1);

% Node 3

Start3 = 6* (Node3-1)+1;

End3 = Start3+5;

E(13:18,1) = UG(Start3:End3,1);

% End of function Local

- function Grad Lin Mom —------—----—--—---—
functlon [Grad p] Grad Lin Mom(pl,p2,p3,B);

oe

oe

SPECIFICATION: This Fluxction serves to calculate the gradient
of the vector of Unknowns

o oo

oe

DESCRIPTION OF MAIN VARIABLES:

oe

% INPUT

$ pi= linear momentum of node i

5 p=[ px

% py ]

% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)
% OUTPUT

% Grad p: Gradient of Unknowns

g | px,x px,y |

oe

| py,x py,y |
Grad p=zeros(2,2);

o)

% First column: derivatives with respect to X
Grad p(1:2,1)=pl(1:2)*B(1,1)+p2(1:2)*B(2,1)+p3(1:2)*B(3,1);

o)

% Second column: derivatives with respect to Y
Grad p(1:2,2)=pl(1:2)*B(1,2)+p2(1:2)*B(2,2)+p3(1:2)*B(3,2);

% End of Grad Lin Mom function

F——————— function Div P -—---—----——————--—-

functlon [DP] = Div_P(P1,P2,P3,B)

oe

oe

SPECIFICATION: This function serves to calculate the divergence
of the 1st Piola Kirchhoff stress tensor

oe

DP=zeros (2,1);

DP=P1(1:2,1)*B(1,1)+P2(1:2,1)*B(2,1)+P3(1:2,1)*B(3,1)+
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P1(1:2,2)*B(1,2)+P2(1:2,2)*B(2,2)+P3(1:2,2)*B(3,2);
% End of Div P function

S——————= function Entropy E ---------——-—--———-

o

©

function [EntropyE] = Entropy E(Grad p,DP,p Ave,Piola Ave)

o)

o

SPECIFICATION: This function serves to calculate the variation of the
entropy with respect to time dE/dt in each element

oe

oe

EntropyE=trace (transpose (Grad p)*Piola Ave)-+transpose(p Ave) *DP;

o)

% End of Entropy E function

Traction.m

g m function Traction -----------—-—-—-—-————-—

function [Stress]=Traction(Time,Dim) ;

oe

oe

SPECIFICATION: This function serves to specify the applied
Stress on the boundary sides.

oe

oe

Nodal Load X = 0.025;
Nodal Load Y = 0.00;
TO = 0.1;
Stress =0.0;

Stress Max=0.0;

if (Dim==1)

Stress Max=Nodal Load X;
elseif (Dim==2)

Stress Max=Nodal Load Y;
end;

% Linear function
if (Time==0)
Stress=0;
elseif and((Time < TO0), (Time > 0))
Stress=Stress Max* (T0- (T0-Time)) /TO;
else
Stress=Stress Max;
end;

o)

% End of Load function

Write_Data.m

S ————— function Write Data —-------——---——-——————-———-—

function [Done]=Write Data (LOUT,NN,T,Displ,Vel, ...
Strain,Stress,Press,Error_Press);

fprintf (LOUT, "' Node# Counter# Time DispX
DispY VelX VelY EXX EYY
EXY SXX SYY SXY Press

ErrorPress\n');
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for Counter=1:length(T)

for Node = 1:NN
fprintf (LOUT, ' %4d %15.3E %15.3E %$15.3E %15.3E %$15.3E %15.3E %15.3E %15.3E
%$15.3E %15.3E %15.3E %15.3E %15.3E %15.3E\n', ...
Node, Counter, T (Counter), ...
Displ (Node,1l,Counter),Displ (Node, 2, Counter), ...
Vel (Node, 1, Counter) , Vel (Node, 2, Counter), ...
Strain (Node, 1,Counter), Strain (Node, 2, Counter),Strain (Node, 3, Counter), ...
Stress (Node, 1,Counter),Stress (Node, 2, Counter), Stress (Node, 3,Counter), ...
Press (Node, 1, Counter) ,Error Press (Node,1,Counter));
end;

end;

fclose (LOUT) ;
Done=1;

o)

% End of function Write data

Output.m
function [Done] = Output (NN,NE,X,NOC,T,Disp,Vel, ...

Strain, Stress, Pressure,Error Press);
Continue=1;

while not (Continue==0)

disp('-—=======————————— ") ;
disp(' 1 Displacement X');

disp(' 2 Displacement Y');

disp(' 3 Velocity X');

disp(' 4 : Velocity Y');

disp(' 5 : Normal Cauchy Stress X');

disp(' 6 : Normal Cauchy Stress Y');

disp (' 7 Tangent Cauchy Stress XY');

disp(' 8 Normal Almansi Strain X');

disp(' 9 : Normal Almansi Strain Y');
disp('1l0 : Tangent Almansi Strain XY');
disp('ll : Volumetric Pressure');

disp('l2 : Error on Volumetric Press');
disp('--======-—=——-—-———— - ——— ') ;
Keyl=0;
while not ((Keyl==1) | (Keyl==2) | (Keyl==3)

| (Keyl==4) | (Keyl==5) | (Keyl==6)...

| (Keyl==7) | (Keyl==8) | (Keyl==9)...

| (Keyl==10)| (Keyl==11)| (Keyl==12))
Keyl=input ('enter chosen option ');

end;
disp('-—==—====—=—=——————— - ——— ') ;
disp(' 1 : Nodal representation');
disp(' 2 : Evolution of variable');
disp('—======———————————— ")
Key2=0;
while not ((Key2==1) | (Key2==2))

Key2=input ('enter chosen option ');
end;

if (Key2==1) % Nodal representation

Percentage = -1.0;
while or ((Percentage<0), (Percentage>100))

o)

Percentage=input ('enter % of total time ');
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end;

Counter=round (Percentage*length (T) /100) ;

% Deformed geometry

XD=zeros (NN, 2) ;
XD(1:NN,1)=X(1:NN,1)+Disp(1:NN,1,Counter);
XD(1:NN,2)=X(1:NN,2)+Disp(1:NN, 2, Counter) ;

% Chosen variable
f (Keyl==1)
Value=Disp(1:NN, 1, Counter);
elseif (Keyl==2)
Value=Disp (1:NN, 2, Counter) ;
elseif (Keyl==3)
Value=Vel (1:NN, 1, Counter) ;
elseif (Keyl==4)
Value=Vel (1:NN, 2, Counter) ;
elseif (Keyl==5)
Value=Stress (1:NN, 1, Counter);
elseif (Keyl==6)
Value=Stress (1:NN, 2, Counter) ;
elseif (Keyl==7)
Value=Stress (1:NN, 3, Counter) ;
elseif (Keyl==8)
Value=Strain (1:NN, 1,Counter);
elseif (Keyl==9)
Value=Strain (1:NN, 2,Counter) ;
elseif (Keyl==10)
Value=Strain (1:NN, 3,Counter) ;
elseif (Keyl==11)
Value=Pressure (1:NN, 1, Counter) ;
elseif (Keyl==12)
Value=Error Press(1:NN,1,Counter);

-

end;

disp('=-=—====="""="""="-""""""""""""-" "y

disp(' 1 : Contour colours plot & original geometry');

disp(' 2 : Filled colours plot & original geometry');

disp(' 3 : Contour colours plot & deformed geometry');

disp(' 4 Filled colours plot & deformed geometry');

disp('---——=""=""""""""""""""" = ),

Key3=0;

while not ((Key3==1) | (Key3==2) | (Key3==3) | (Key3==4))
Key3 = input('enter chosen option ');

end;

% Chosen plot

if (Key3==1)
[Done] = Contourl (NN, NE, 3,X,NOC,Value) ;
elseif (Key3==2)
[Done] = Contour2 (NN, NE, 3,X,NOC,Value) ;
elseif (Key3==3)
[Done] = Contourl (NN, NE, 3,XD,NOC,Value) ;
elseif (Key3==4)
[Done] = Contour2 (NN, NE, 3,XD,NOC,Value) ;
end;

elseif (Key2==2) % Evolution of variable in time

Counter Max=length (T) ;

Node=0;
while or ((Node<1l), (Node>NN) )

Node = input ('enter Node to be analyzed ');
end;

if (Keyl==1)
for Counter = 1: Counter Max
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Value (Counter)=Disp (Node, 1, Counter) ;
end;
elseif (Keyl==2)
for Counter = 1: Counter Max
Value (Counter)=Disp (Node, 2, Counter) ;

end;
elseif (Keyl==3)
for Counter = 1: Counter Max
Value (Counter)=Vel (Node, 1, Counter) ;
end;
elseif (Keyl==4)
for Counter = 1: Counter Max
Value (Counter)=Vel (Node, 2, Counter) ;
end;
elseif (Keyl==5)
for Counter = 1: Counter Max
Value (Counter)=Stress (Node, 1, Counter) ;
end;
elseif (Keyl==6)
for Counter = 1: Counter Max
Value (Counter)=Stress (Node, 2, Counter) ;
end;
elseif (Keyl==7)
for Counter = 1: Counter Max
Value (Counter)=Stress (Node, 3, Counter) ;
end;
elseif (Keyl==8)
for Counter = 1: Counter Max
Value (Counter)=Strain (Node, 1,Counter);
end;
elseif (Keyl==9)
for Counter = 1: Counter Max
Value (Counter)=Strain (Node, 2, Counter) ;
end;
elseif (Keyl==10)
for Counter = 1: Counter Max
Value (Counter)=Strain (Node, 3, Counter) ;
end;
elseif (Keyl==11)
for Counter = 1: Counter Max
Value (Counter)=Pressure (Node, 1,Counter) ;
end;
elseif (Keyl==12)
for Counter = 1: Counter Max
Value (Counter)=Error Press (Node,1l,Counter);
end;
end;

plot (T,Value) ;
end;
Continue = input('0: EXIT | 1: CONTINUE plotting ');
end; % End of while not (Continue==0)
Done=1;
save T.txt T -ascii -tabs

save Value.txt Value -ascii -tabs
% End of function Output

Postprocess.m

clear all;
clc;
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o)

=, Head of the program

disp('************************************** '

*

disp('* POST PROCESS PROGRAM *
disp('* LAGRANGIAN DYNAMICS *
disp('* wusing the 2-STEP TAYLOR-GALERKIN * !
*

*

’
Ty .
’

)
)
)
).
)
)

’

’

disp('* X.M.Carreira: xmcarreira@yahoo.com *'

dlSp ( Thhkhhkhhkkh kA hhdhkhhAd kA hk Ak khhhkd kA hk kA hkh Ak xhkxk k% '

’

o)

G—————- Reading data of input/output files from keyboard

disp (blanks (1)) ;

o)

% NOTE: Only geometrical information is extracted from input file

FILE1l = input ('Input Data File Name ', 's');
LINP = fopen(FILEl,'xr'");

FILE2 = input ('Output Data File Name ', 's');
LOUT = fopen(FILE2,'xr'");

[TITLE, NN, NE,NQ, X, NOC, NBC, NBE, NB1,NB2,BT,NIC,NV, IC, ...
Mat Prop,dt,NT,PM,WF]=Read Data (LINP);

o)

S —————— Reading written output file

Dummy= fgets (LOUT); % Dummy line for the head of the output file
Line = fgets(LOUT); % 1lst row
while not (feof (LOUT))
for J=1:NN
TMP = str2num(Line);
[Node, Counter, T (Counter), ...
Displ (Node,1:2,Counter), Vel (Node,l1l:2,Counter), ...
Strain (Node, 1:3,Counter), Stress (Node,1l:3,Counter),
Press (Node, 1,Counter), Error Press (Node,1l,Counter)]=...
deal (TMP (1), TMP (2),TMP(3),TMP(4:5) ,TMP(6:7) ,TMP (8:10), ...
TMP (11:13),TMP(14),TMP(15)) ;
Line = fgets (LOUT) ;
end;
end;

fclose (LOUT) ;

F———————= Postprocessing data
[Done] = Output (NN,NE,X,NOC,T,Displ,Vel, ...
Strain, Stress, Press,Error Press);

o)

% End of Postprocessing program

V. Quad 2-D code

Global_RHS.m

e m e function Global RHS —-------———-———————————————

function [RHS,Error P]=Global RHS(DJO,DJ1,DJ2,DJ3,DJ4,B0,B1,B2,B3,B4, ...
Normal, Length,N1,N2,NE,NQ, NOC, NBE, ...
BT,NU,Mat Prop, UG, Time,dt);

oe

oe

SPECIFICATION: This procedure serves to create the system

oe

oe

DESCRIPTION OF MAIN VARIABLES:

oe

oe

NN: Number of nodes
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% NE: Number of elements

% NOC: Number of Components

% RHS: Right hand side vector in global system

% RHSE: Contribution to the right hand side vector of one element
% UE: Unknowns=transpose|[ pl F1 | p2 F2 | ... ] 6*NN rows, 1 column
% (for quad2d, 24x1)

% UG: Unknowns in global coordinates

% NDIM: Number of coordinates per node (i.e. NDIM=2 in 2D)

% dt: Step of time

% B: Bij is the partial of Ni respect to Xj (Voigt matrix)

% BT: Boundary type

% BT= 0 : Clamped wall px=0, py=0

$ BT= -1 : Hinges parallel to X py=0

% BT= -2 : Hinges parallel to Y px=0

$ BT= -10 : Movement parallel to X py=0, Pn=0

% BT= -20 : Movement parallel to Y px=0, Pn=0

% BT= 1 : Free boundary Pn=0

% BT= 10 : Load Traction=Pn

% DJ: Determinant of the Jacobian of the transformation

oe

Area=4*DJ0 exactly evaluated with 1 point
Area=DJ1+DJ2+DJ3+DJ4

oe

oe

---- Initializing global RHS and Error variables

RHS = zeros (NQ,1);
NN=NQ/6;

P Max = -1e300*ones(NN,1);
P Min = 1e300*ones(NN,1);

Error P= zeros(NN,1);

% —---- Material properties
Young = Mat Prop(1l);
Poisson = Mat Prop(2);
Kappa=Young/ (3-6*Poisson) ;
Dens = Mat Prop(3);
Lambda Vis = Mat Prop(4);
Mu Vis = Mat Prop(5);

for N = 1:NE

% —-—--- Geometric properties
% Global nodes mumeration
Nodel = NOC(N,1);

Node2 = NOC(N, 2) ;

Node3 = NOC(N, 3) ;

Noded4 = NOC (N, 4)

’

)

% Other geometric properties

DJE0=DJO (1,N) ;
BEO=B0O(1:4,1:2,N);

DJE1=DJ1 (1,N) ;
BE1=B1(1:4,1:2,N);

DJE2=DJ2 (1,N) ;
BE2=B2(1:4,1:2,N);

DJE3=DJ3(1,N);
BE3=B3(1:4,1:2,N);

DJE4=DJ4 (1,N) ;
BE4=B4(1:4,1:2,N);

T —-——- At time n
% Getting local element unknowns from global unknowns...
[UE] = Local (UG, Nodel,Node2, Node3,Node4) ;
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% Calculation of old flux
[

FluxE] = Flux Unk(Young, Poisson,Dens, UE) ;
& ————- At time n+1/2
% Prediction of new local element unknowns
[dUE] = Unk Predict (FluxE,BEO,dt);
UE=UE+dUE;
5 ————- Error control structure over pressure
F1(1,1) = UE(3); F1(1,2) = UE(4); % F Nodel
F1(2,1) = UE(5); F1(2,2) = UE(6);
F2(1,1) = UE(9); F2(1,2) = UE(10); % F Node2
F2(2,1) = UE(11); F2(2,2) = UE(12);
F3(1,1) = UE(15); F3(1,2) = UE(1l6); % F Node3
F3(2,1) UE(17); F3(2,2) = UE(18);
F4(1,1) = UE(21); F4(1,2) = UE(22); % F Node4
F4(2,1) UE(23); F4(2,2) = UE(24);
% Volumetric Stress: Pressure
Pl=Kappa* (det (Fl1)-1); $ PV1
P Max (Nodel) = max (P Max(Nodel),P1);
P Min(Nodel) = min(P_Min(Nodel),P1l);
P2=Kappa* (det (F2)-1) ; % PV2
P Max (Node2) = max (P _Max (Node2),P2);
P Min(Node2) = min(P_Min (Node2),P2);
P3=Kappa* (det (F3)-1); % PV3
P Max (Node3) = max (P Max (Node3),P3);
P Min(Node3) = min(P_Min(Node3),P3);
P4=Kappa* (det (F4)-1); % PV4
P Max (Node4) = max (P Max (Noded), P4);
P Min(Noded4) = min(P_Min (Node4),P4);
& ————- End of error control structure

% Prediction of new local element flux
[FluxE] = Flux Unk (Young,Poisson, Dens,UE) ;

o\

————— Viscous flux

[FluxE Vis]=Flux Vis Unk(Lambda Vis,Mu Vis, Dens,UE,BEO) ;

% Total flux without viscosity

FluxE=FluxE-FluxE Vis;

% Getting internal contribution of the element

RHSE=Internal RHS (FluxE,DJEl,DJE2,DJE3,DJE4,BEl,BE2,BE3,BE4,dt);

o)

% Getting external contribution of the boundary
for side=1:length (NBE)
if (N==NBE (side))
NormalE=Normal (1:2,1,side);
LengthE=Length (1, side) ;
N1E=N1 (1, side);
N2E=N2 (1, side) ;

Startl = 6*(N1E-1)+1;

Endl = Startl+5;

Start2 = 6* (N2E-1)+1;

End2 = Start2+5;

FluxN(1l:6 ,1) = FluxE(Startl:Endl,1:2)*NormalE; % Nodel
FluxN(1:6 ,1) = Modify Flux(FluxN(1:6 ,1),BT(side),Time);
FluxN(7:12,1) = FluxE(Start2:End2,1:2)*Normalk; % Node?2

FluxN(7:12,1)

Modify Flux(FluxN(7:12,1),BT(side),Time);

% Calculation of external contribution of element to RHS
[External]=External RHS (FluxN,N1E,NZ2E,LengthE,dt)
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RHSE=RHSE+External;
end; % End of if (N==NBE (side))

end; % End of for side=l:length (NBE)

o)

% —-—--- Assembling
[RHS] = Assemble (RHS,Nodel,Node2,Node3,Noded4, RHSE) ;

end; % End of general loop for N = 1:NE

% —---- Modify RHS for Wall conditions (Strong form)
[RHS] = Modify Wall BC (RHS,NU) ;

o)

% —---- Calculate deviation error of volumetric pressure
Error P = P Max - P Min;

% End of function Global RHS

Fm—————————— function Modify Flux --—--—---——-——----

o
°

function [Flux] = Modify Flux(Flux,BT,Time)

% SPECIFICATION: This function modifies the Flux of the Element

% FluxE depending on the Boundary Type BT
% BT= 0 : Clamped wall px=0, py=0
% BT= -1 : Hinges parallel to X py=0
$ BT= -2 : Hinges parallel to Y px=0
% BT= -10 : Movement parallel to X py=0, Pn=0
$ BT= -20 : Movement parallel to Y px=0, Pn=0
% BT= 1 : Free boundary Pn=0
% BT= 10 : Load Traction=Pn
if (BT==0) % px=0, py=0
Flux(3,1)=0;
Flux(4,1)=0;
Flux(5,1)=0;
Flux(6,1)=0;

Flux(5,1)=0;
Flux (6,1)=0;

elseif (BT==-2)

oo
o]
X
Il

o

Flux(3,1)=0;
Flux (4,1)=0;

elseif (BT==-10) % py=0 Pn=0
Flux(1,1)=0;
Flux(2,1)=0;
Flux (5,1)=0;
Flux(6,1)=0;

elseif (BT==-20)

oe

px=0 Pn=0

Flux(1,1)=0;
Flux (2,1)=0;
Flux(3,1)=0;
Flux (4,1)=0;
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elseif (BT==1) % Free condition Pn=0

Flux (1,1)=0;
Flux(2,1)=0;

elseif (BT==10) % Load condition Pn=traction

Flux(l,1)=-1*Traction (Time, 1) ;
Flux (2,1)=-1*Traction (Time, 2) ;

end;
% End of function Modify Flux

Fmm e function Internal RHS --------------—-—-—-——-———-
function [RHSE]=Internal RHS (FluxE,DJ1,DJ2,DJ3,DJ4,B1,B2,B3,B4,dt);

oe

oe

SPECIFICATION: This function serves to calculate the contribution
to RHS of each element considering the internal
flux and external loss through the boundary.

o o

oe

Fluxl = FluxE( 1l:60, 1:2);
Flux2 = FluxE( 7:12, 1:2);
Flux3 = FluxEkE(13:18, 1:2);
Flux4 = FluxE(19:24, 1:2);

oe

Average Flux0
Average Flux0

zeros (6,2);
(Fluxl+Flux2+Flux3+Flux4) /4;

oe

cl=0.25*(1.0+(1.0/sqrt(3.0)))*(1.0+(1.0/sqgrt(3.0)));
c2=0.25*%(1.0+(1.0/sgrt(3.0)))*(1.0-(1.0/sqrt(3.0)));
c3=0.25*(1.0-(1.0/sqrt(3.0)))*(1.0-(1.0/sqgrt(3.0)));
cd=c2;

Average Fluxl = zeros(6,2);
Average Fluxl = cl*Fluxl+c2*Flux2+c3*Flux3+c4*Flux4;

Average Flux2 = zeros(6,2);
Average Flux2 = c4*Fluxl+cl*Flux2+c2*Flux3+c3*Flux4;

Average Flux3 = zeros(6,2);
Average Flux3 = c3*Fluxl+c4*Flux2+cl*Flux3+c2*Flux4;

Average Flux4 = zeros(6,2);
Average Flux4 = c2*Fluxl+c3*Flux2+c4*Flux3+cl*Flux4;

Int Rhs=zeros(24,1);

oe

Int Rhs( 1:6 ,1) = dt*(4*DJO)* (Average Flux0(1:6,1)*BO(1,1)+...
Average Flux0(1:6,2)*B0(1,2)); % Node 1

oe

Int Rhs( 1:6 ,1) = dt*(DJ1l)* (Average Fluxl(1l:6,1) )+
Average Flux1(1l:6,2) ))

dt* (DJ2) * (Average Flux2(1l:6,1) )+

Average Flux2(1:6,2) ))

dt* (DJ3) * (Average Flux3(1:6,1)*B3(1,1)+

Average Flux3(1:6,2) ))

dt* (DJ4) * (Average Flux4(1l:6,1) ) +

6,2) ))

Average Flux4(1l: ; % Node 1

oe

Int Rhs( 7:12,1) dt* (4*DJ0) * (Average Flux0(1:6,1)*B0(2,1)+...

Average Flux0(1:6,2)*B0(2,2)); % Node 2

oe

Int Rhs( 7:12,1) = dt*(DJ1)* (Average Flux1(1:6,1)*B1(2,1)+
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Average Flux1(1l:6,2) Y) 4. ..
dt* (DJ2) * (Average Flux2(1l:6,1) )+
Average Flux2(1:6,2) ))

dt* (DJ3) * (Average Flux3(1:6,1)*B3(2,1)+
Average Flux3(1:6,2) ) )

dt* (DJ4) * (Average Flux4(1l:6,1) )+
6,2) ))

Average Flux4(l: ; % Node 2

oe

Int Rhs(13:18,1) dt* (4*DJ0) * (Average Flux0(1:6,1)*B0(3,1)+...

Average Flux0(1:6,2)*B0(3,2)); % Node 3

oe

Int Rhs(13:18,1) = dt*(DJl)* (Average Fluxl(1:6,1)*B1(3,1)+ .
Average Flux1(1:6,2)*B1(3,2))+..
dt* (DJ2) * (Average Flux2(1:6,1)*B2(3,1)+ .
Average Flux2(1:6,2)*B2(3,2))+.
dt* (DJ3) * (Average Flux3(1:6,1)*B3(3,1)+ ..
Average Flux3(1:6,2)*B3(3,2))+..
dt* (DJ4) * (Average Flux4(1:6,1)*B4(3,1)+ ...
Average Flux4(1:6,2)*B4(3,2)); % Node 3

oe

Int Rhs(19:24,1) = dt*(4*DJO)* (Average Flux0(1:6,1)*B0(4,1)+...
Average Flux0(1:6,2)*B0(4,2)); % Node 4

oe

Int Rhs(19:24,1) = dt*(DJ1l)* (Average Fluxl(1l:6,1)*B1(4,1)+ .

Average Flux1(1:6,2)*B1(4,2))+..

dt*(DJ2) * (Average Flux2(1:6,1)*B2(4,1)+ ..
Average Flux2(1:6,2)*B2(4,2))+..

dt* (DJ3) * (Average Flux3(1:6,1)*B3(4,1)+ ..
Average Flux3(1:6,2)*B3(4,2))+..

dt* (DJ4) * (Average Flux4(1:6,1)*B4(4,1)+ ...
Average Flux4(1:6,2)*B4(4,2)); % Node 4

RHSE=Int Rhs;

% End of function Internal RHS

g m function External RHS ------------—--—-—-——-—————

function [External] = External RHS(FluxN,N1,N2,Length,dt):;

oe

oe

SPECIFICATION: This function serves to calculate the contribution
to RHS of each element considering the external
loss through the boundary N1-N2

a° oo

oe

if (N1==N2)
External=zeros (24,1);
else
% Calculation of starting d.o.f. for N1 and N2

External = zeros(24,1);

Startl = 6* (N1-1)+1;

Endl = Startl+5;
Start2 = 6* (N2-1)+1;
End2 = Start2+5;

Fluxl = FluxN(l1l:6 ,1);
Flux2 = FluxN(7:12,1);

External (Startl:Endl,1) = -0.5*dt* ((2*Fluxl+Flux2)/3)*Length;
External (Start2:End2,1) = -0.5*dt* ((2*Flux2+Fluxl) /3)*Length;
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end;

% End of function External RHS

function [UE]=Local (UG, Nodel,Node2,Node3,Noded) ;

o)

o

oe

SPECIFICATION: This function serves to obtain
the local unknowns from global coordinates

o o

oe

UG: Global vector
UE: Local vector for the element

oe

UE=zeros (24,1);

% Node 1

Startl = 6* (Nodel-1)+1;

Endl = Startl+h;

UE(l:6,1) = UG(Startl:Endl,1);
% Node 2

Start2 = 6* (Node2-1)+1;

End2 = Start2+5;

UE(7:12,1) = UG(Start2:End2,1);
% Node 3

Start3 = 6* (Node3-1)+1;

End3 = Start3+5;

UE (13:18,1) = UG(Start3:End3,1);
% Node 4

Startd4d = 6* (Noded-1)+1;

End4 = Startd+5;

UE(19:24,1) = UG(Start4:End4,1);

% End of function Local

g function Modify Wall BC -------——-——----
function [RHS]=Modify Wall BC(RHS,NU);

oe

SPECIFICATION: This function serves to modify global RHS vector
for the Wall Boundary Conditions in the nodes
given by NU

oe

oe

for I = 1:length(NU)

N = NU(I);
RHS (N) = 0;
end;

% End of function Modify Wall BC

Fm—————— function Assemble -------------—-

function [RHS]=Assemble (RHS,Nodel,Node2,Node3,Node4d, RHSE)

o)

o

oe

SPECIFICATION: This function adds the contribution
of elemental RHS to the global RHS

oe

oe

% Node 1

Startl = 6* (Nodel-1)+1;

Endl = Startl+5;

RHS (Startl:Endl,1) = RHS(Startl:Endl,1)+RHSE( 1:6 ,1);

g function Local ----—-——=—=—-——————————————
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% Node 2

Start?2 = 6* (Node2-1)+1;

End2 = Start2+5;

RHS (Start2:End2,1) = RHS(Start2:End2,1)+RHSE( 7:12,1);
% Node 3

Start3 = 6* (Node3-1)+1;

End3 = Start3+5;

RHS (Start3:End3,1) = RHS(Start3:End3,1)+RHSE (13:18,1);
% Node 4

Startd4d = 6* (Noded-1)+1;

End4 = Start4+5;

RHS (Start4:End4,1) = RHS(Start4:End4,1)+RHSE(19:24,1);

End of function Assemble
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